
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
Cambridge, Massachusetts

Guided Signal Reconstruction with
Application to Image Magnification

Akshay Gadde (USC, MERL)
Speaker: Andrew Knyazev (MERL)

Hassan Mansour (MERL)
Dong Tian (MERL)

c©MERL December 16, 2015 1 / 21



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline

1. Introduction

Problem Definition and Motivation

Related Work

2. Reconstruction Set

Geometric Interpretation

Algorithm for Finding the Reconstruction Set

Relation to Regularized Reconstruction

3. Experiments

4. Conclusion and Future Work

c©MERL December 16, 2015 2 / 21



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Outline

1. Introduction

Problem Definition and Motivation

Related Work

2. Reconstruction Set

Geometric Interpretation

Algorithm for Finding the Reconstruction Set

Relation to Regularized Reconstruction

3. Experiments

4. Conclusion and Future Work

c©MERL December 16, 2015 3 / 21



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Problem Definition

sample reconstruct

sampling
subspace

• Lossy measurements

• Prior information about the signal ⇒ Guiding subspace T ⊂ H

f ∈ T or ‖T⊥f‖ small

Questions

Conditions on S and T for:

• Uniqueness of reconstruction

• Stability of reconstruction

• Efficient algorithm for reconstruction

• Effect of noise and model mismatch
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Motivation

• Image magnification

• S : 2× 2 averaging

• T : low pass DCT

• Semi-supervised
learning

?

?

?

?

• S = {x|xU = 0}
• T : low pass GFT

T =

{
K∑
i=1

ciui

}
,

{ui} e.v.’s of graph L

• Bandwidth expansion of
speech

consisting of all the recordings from one of the speakers in the
“speaker dependent” component of the Wall street journal cor-
pus, and the second on open-mic recordings obtained from a
male speaker. All signals were sampled at 16Khz. In each set,
five minutes of full-bandwidth recordings from the speakers
were utilized as training data; the rest of the speech was used as
test data. The test data were filtered and downsampled to 4Khz.

All signals were analyzed with 32ms windows, both for training
and testing, resulting in a 512 point Fourier spectrum with 257
unique points. Envelope and harmonic spectra were obtained by
utilizing a K value of 85 in Equations 5 and 6. 50 spectral patch
bases of width  were obtained for the envelope spectra.
100 spectral bases with  were obtained for the harmonic
spectra. Figure 2 shows a number of the envelope bases. Several
of them are observed to capture spectral trajectories of phoneme
segments. In particular, some are seen to capture fricatives.

On the wall street journal data, it was assumed that the narrow-
band signals extended until 4000 Hz (i.e. the cutoff frequency F
was assumed to be 4Khz). For the bandwidth expansion, all fre-
quencies from 4-8 Khz were reconstructed. Figure 3a shows the
spectrum of a signal reconstructed in this manner. On the second
data set, the cutoff frequency below which reliable low-fre-
quency components could be obtained from the narrowband sig-
nal was set to a more realistic 3.7Khz. Bandwidth expansion
only reconstructed frequencies upto 6500Hz in this case. Figure
3b shows and example of a signal reconstructed in this manner.
Additional audio samples may be downloaded from http://
www.cs.cmu.edu/~bhiksha/audio

5. Observations and Conclusions
As can be observed from Figure 3, the bandwidth expansion
technique proposed in this paper is able to reconstruct higher fre-
quencies of the signal very accurately. As the audio samples
demonstrate, the reconstructed signals are perceptually indistin-
guishable from the original wide-band signals that the test data
were derived from. The proposed method thus promises to be
highly effective for bandwidth expansion of narrowband speech.

However, the algorithm as presented here can only be consid-
ered preliminary. The current implementation is speaker-spe-
cific: CNMF bases were derived from speaker specific training
data. It remains to be determined if the technique will work in a
speaker independent manner. Encouragingly, excellent results
have been obtained even though the training data used for the
speakers in all of our experiments was typically less than 5 min-
utes. This leads us to speculate that reliable speaker-independent
bases can be obtained from multi-speaker corpora, since the
characteristics of any speaker or group of speakers can be cap-
tured from relatively small amounts of data. 

It must also be determined if speaker-independent bases so
obtained are language independent since the bases appear to cap-
ture spectral trajectories that resemble phonemes. The test data
in our experiments were relatively noise free. The effect of noise
on the proposed technique remains to be evaluated. Finally, all
test recordings were obtained by downsampling broadband

speech. The effectiveness of the algorithm on real telephone
recordings remains to be evaluated. We expect to cover all these
aspects in future work.
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Figure 2.  Examples of spectral patch bases derived from the envelope
spectra for a speaker from the WSJ corpus. Note that many of the bases
appear to capture entire spectral trajectories for a part of a phoneme.
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Figure 3b.   i) original broadband signal. ii) upsampled narrow-band sig-
nal with frequencies up to 3.7Khz. iii) reconstructed broadband signal
with frequencies up to 6.5Khz. 

Figure 3a.  i) original broadband signal. ii) upsampled narrow-band sig-
nal with frequencies up to 4Khz iii) reconstructed broadband signal. 
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• S : low pass DFT

• T : learned from data
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nal with frequencies up to 3.7Khz. iii) reconstructed broadband signal
with frequencies up to 6.5Khz. 
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Related Work: Consistent Reconstruction

• Consistent reconstruction f̂ ⇔ Sf̂ = Sf (Unser and Aldroubi’94, Eldar’03)

Existence and Uniqueness

• Consistent reconstruction exists in T for any f ∈ H

iff T + S⊥ = H

• Consistent reconstruction is unique

iff T ∩ S⊥ = {0}

• Under the above assumptions

f̂ = PT ⊥Sf (oblique projection)

• If f ∈ T then f̂ = f

• If T ∩ S⊥ 6= {0} (non-unique consistent solutions), pick
one by imposing additional constraints
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Related Work: Generalized Reconstruction

• Existence of consistent reconstruction needs T + S⊥ = H

• Can lead to unstable reconstructions (if min. gap between T and S is large)

• Oversampling for stability can cause T + S⊥ ⊂ H

Generalized reconstruction

• Sample consistent plane Sf + S⊥

• f̂ ∈ T closest to Sf + S⊥ (relax Sf = Sf̂)

f̂ = PT ⊥S(T )f

Question: f̂ ∈ Sf + S⊥ (consistent) or f̂ ∈ T (generalized) or something else?
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Reconstruction Set

• sample consistent place Sf + S⊥

• guiding subspace T

Reconstruction set

Shortest pathway between the consistent place and the guiding subspace

min
f̂∈Sf+S⊥

min
t∈T
‖f̂ − t‖ = min

f̂∈Sf+S⊥
t∈T

‖f̂ − t‖ = min
t∈T

min
f̂∈Sf+S⊥

‖f̂ − t‖

• f̂ : consistent reconstruction

• t: generalized reconstruction
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Iterative Consistent Reconstruction Using Cojugate Gradient

• Consistent reconstruction

inf
f̂
‖T⊥f‖ subject to Sf̂ = Sf

Consistent reconstruction using CG

Define x̂ = (f̂ − Sf) ∈ S⊥. Then the above problem is equivalent to solving

(S⊥T⊥)
∣∣
S⊥x = −S⊥T⊥Sf (Sf : measurement)

• Restriction of S⊥T⊥ to S⊥ is self-adjoint

• Use CG with initialization x0 ∈ S⊥

• CG: most efficient iterative method for solving linear systems

• Frame-less algorithm: Needs only the (approximate) projector T
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Finding the Reconstruction Set

min
f̂∈Sf+S⊥

min
t∈T
‖f̂ − t‖ = min

f̂∈Sf+S⊥
t∈T

‖f̂ − t‖ = min
t∈T

min
f̂∈Sf+S⊥

‖f̂ − t‖

• f̂ : consistent reconstruction

• t: generalized reconstruction

• Relation between f̂ and t

t = Tf̂

Reconstruction Set = {αf̂ + (1− α)Tf̂ , where α ∈ [0, 1]}

c©MERL December 16, 2015 11 / 21



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Finding the Reconstruction Set

min
f̂∈Sf+S⊥

min
t∈T
‖f̂ − t‖ = min

f̂∈Sf+S⊥
t∈T

‖f̂ − t‖ = min
t∈T

min
f̂∈Sf+S⊥

‖f̂ − t‖

• f̂ : consistent reconstruction

• t: generalized reconstruction

• Relation between f̂ and t

t = Tf̂

Reconstruction Set = {αf̂ + (1− α)Tf̂ , where α ∈ [0, 1]}

c©MERL December 16, 2015 11 / 21



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Connection with Regularization

Reconstruction by regularization

inf
f̂ρ

∥∥∥Sf̂ρ − Sf
∥∥∥2 + ρ

∥∥∥(f̂ρ −Tf̂ρ
)∥∥∥2 , ρ > 0

Theorem (Reconstruction set and Regularization)

Let f̂ be the consistent reconstruction given by

inf
f̂
‖T⊥f‖ subject to Sf̂ = Sf .

The reconstruction set is given by {f̂α = αf̂ + (1− α)Tf̂ , where 0 ≤ α ≤ 1}. Then
f̂α is a solution of the regularized reconstruction problem with ρ = (1− α)/α.

• If a unique f̂ ∈ T ∩ (Sf + S⊥) exists, then f̂ρ = f̂ = Tf̂ ∀ ρ > 0

• No need to re-solve the regularization problem if ρ changes
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Reconstruction in the Presence of Noise

• Noisy measurements: Sf ′ = Sf + e ⇒ Original signal f /∈ (Sf ′ + S⊥)

• Trust the guiding more than the samples

• Let f̂ ∈ Sf ′ + S⊥ be the consistent solution

⇒ Good solution is f̂α = αf̂ + (1− α)Tf̂ with α > 0

Good choice of α

Noise energy ‖e‖. Then pick α such that

1− α =
‖e‖

‖f̂ −Tf̂‖
⇒ f̂α = f̂ − ‖e‖ f̂ −Tf̂

‖f̂ −Tf̂‖

• Assumes that noise is orthogonal to T
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Experiment I: Problem Setting

• Original signal f : w × w image

• Sampling subspace S: Sf = BSB
∗
Sf , where

B∗S : r × r averaging then downsampling

BS : upsampling by copying each pixel in r × r block

• Guiding subspace T : k × k low pass bandlimited DCT

• kscale = (w/r)/k: relative dimensionality of S and T
kscale < 1 : undersampling

kscale > 1 : oversampling
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Experiment II: Noiseless Reconstruction

f̂c: Consistent, f̂g = Tf̂c: Generalized, f̂m = TSf : minimax regret (Eldar et al’06)
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• kscale < 1 (undersampling): f̂c = f̂g better than f̂m

• kscale > 1 (oversampling): f̂c better than f̂g and f̂m

• Since samples are noiseless, reconstruction improves as α increases
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Experiment III: Reconstruction in the Presence of Noise

• Sf ′ = Sf + e, where e is iid N (0, 0.001)⇒ αopt = 0.7
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Conclusion

• Unified view of different reconstruction methods

• Novel formulation of the reconstruction set

• Efficient reconstruction algorithm for finding the reconstruction set

• Connection with regularization and reconstruction with noisy samples

Future work
• Error bounds based on

• noise

• model mismatch

• relative positions of S and T

• Applications in other areas: speech, video, machine learning
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