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Problem Definition

sampling
subspace

Sf P

feH—>» sample reconstruct —»f

e [ossy measurements

e Prior information about the signal = Guiding subspace 7 C H

feT or |Tf| small
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Problem Definition

sampling

f € H—» sample St reconstruct —»f'

e [ossy measurements

e Prior information about the signal = Guiding subspace 7 C H

feT or |Tf| small

Questions
Conditions on § and T for:
e Uniqueness of reconstruction
o Stability of reconstruction
o Efficient algorithm for reconstruction

o Effect of noise and model mismatch
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Motivation

e Image magpnification

e §:2 X 2 averaging
e T :low pass DCT
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e Semi-supervised

e Image magnification learning
i

° SZ{X|X1,{ =0}

e §:2 X 2 averaging
e T :low pass DCT * T :low pass GFT

K
T - g ciu; o,
i=1

{u;} e.v.’s of graph LL
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Motivation
I e Semi-supervised e Bandwidth expansion of
e Image magnification

learning speech

e §:2 X 2 averaging * 8= {xpw =0} e S :low pass DFT

e T :low pass DCT * T :low pass GFT

e 7T :learned from data
K

T = Z cu; o,
i=1

{u;} e.v.’s of graph LL
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Related Work: Consistent Reconstruction

o Consistent reconstruction f < Sf = Sf (Unser and Aldroubi'94, Eldar'03)

Existence and Uniqueness

o Consistent reconstruction exists in 7 for any f € ‘H

iff T +ST=H
o Consistent reconstruction is unique

iff TNS™ = {0}

(@© MERL December 16, 2015 6 /21



}\ EAII_.II-E%I{'EI;!II%HI MITSUBISHI ELECTRIC RESEARCH LABORATORIES for a greener tomorrow

Changes for the Better

Related Work: Consistent Reconstruction

o Consistent reconstruction f < Sf = Sf (Unser and Aldroubi'94, Eldar'03)

Existence and Uniqueness

o Consistent reconstruction exists in 7 for any f € ‘H

iffT+8t =%

o Consistent reconstruction is unique

iff TNS™ = {0}
st T e Under the above assumptions
£3 f=P7,sf (oblique projection)
P e Iff €7 then f=f
S e If TNS* # {0} (non-unique consistent solutions), pick
gf one by imposing additional constraints
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Related Work: Generalized Reconstruction

o Existence of consistent reconstruction needs 7 + S+ = H
e Can lead to unstable reconstructions (if min. gap between 7 and S is large)

o Oversampling for stability can cause 7 + St C H

Generalized reconstruction
e Sample consistent plane Sf + S+
o f €T closest to Sf + S+ (relax Sf = Sf)

f=Prisnf
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Related Work: Generalized Reconstruction

o Existence of consistent reconstruction needs 7 + S+ = H
e Can lead to unstable reconstructions (if min. gap between 7 and S is large)

o Oversampling for stability can cause 7 + St C H

Generalized reconstruction
e Sample consistent plane Sf + S+
o f €T closest to Sf + S+ (relax Sf = Sf)

f=Prisnf

/

Question: f € Sf + St (consistent) or f € T (generalized) or something else?
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2. Reconstruction Set
o Geometric Interpretation

o Algorithm for Finding the Reconstruction Set
o Relation to Regularized Reconstruction
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Reconstruction Set

Consistent

: 1
imputsignal < @SF L o Conctruction e sample consistent place Sf 4+ S
2
@ g e guiding subspace T
é'f Proposed ]
F  reconstruction | @
& PN ]
5 3
-3

Generalized

Gllid,'" e
subspac
reconstruction o

Reconstruction set

Shortest pathway between the consistent place and the guiding subspace

min min||f —t/|= min |f—t|=min min |f—t|
fesfisL teT ?esHTsL teT fesftst
te

e f: consistent reconstruction

e t: generalized reconstruction
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Iterative Consistent Reconstruction Using Cojugate Gradient

e Consistent reconstruction

inf | T f| subject to Sf = Sf
£

(@© MERL December 16, 2015 10 /21



}‘ EII_E%-{%%HI MITSUBISHI ELECTRIC RESEARCH LABORATORIES for a greener tomorrow

Changes for the Better

Iterative Consistent Reconstruction Using Cojugate Gradient

e Consistent reconstruction

inf | T f| subject to Sf = Sf
£

Consistent reconstruction using CG

Define x = (f' — Sf) € S*. Then the above problem is equivalent to solving

(SJ‘TJ‘)|SLX = —S*tTtsf (Sf : measurement)

Restriction of ST+ to St is self-adjoint

Use CG with initialization xo € S*

e CG: most efficient iterative method for solving linear systems

e Frame-less algorithm: Needs only the (approximate) projector T
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Finding the Reconstruction Set

LE =t =min_min [f -]

min  min||f —t/|= min
fesf+sL te€T fest+s teT fesf+st
teT

e f: consistent reconstruction

e t: generalized reconstruction

Consistent
reconstruction

Input signal -
]
<
o ] . ~
& Proposed 5 o Relation between f and t
%" reconstruction ‘E .
6= Tf
[

Generalized
reconstruction
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Finding the Reconstruction Set

min  min||f —t/|= min Hf —t|=min min |f—t|
fesfirsL teT fesf+s teT fesf+sL
teT
e o f: consistent reconstruction
3o

Input signal

Proposed

N

§

&

®  reconstruction
<
&

Generalized
reconstruction

Consistent
reconstruction

Reconstruction Set = {af + (1 — a)Tf,

e t: generalized reconstruction

o Relation between f and t

t=Tf

where a € [0,1]}

11 /21
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Connection with Regularization

Reconstruction by regularization

2 2 N N 2
inf HSfp—SfH +,0H(fp—Tfp)H . p>0
fp

(@© MERL December 16, 2015 12 /21



Changes for the Better

}‘ EII_E%-{%%HI MITSUBISHI ELECTRIC RESEARCH LABORATORIES for a greener tomorrow

Connection with Regularization

Reconstruction by regularization

2 2 N N 2
inf HSfp—SfH +,0H(fp—Tfp)H . p>0
fp

Theorem (Reconstruction set and Regularization)

Let f be the consistent reconstruction given by

inf | T*f|| subject to Sf = Sf.
f

The reconstruction set is given by {fo=aof + (1 —a)Tf, where0 < a <1}. Then
f. is a solution of the regularized reconstruction problem with p = (1 — «)/a.

e If a unique f € 7 N (Sf + S1) exists, then f, =f =Tf Vp>0
P

e No need to re-solve the regularization problem if p changes
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Reconstruction in the Presence of Noise

¢ Noisy measurements: Sf’ = Sf + e = Original signal f ¢ (Sf’ +S%)
e Trust the guiding more than the samples

o Let f € Sf’ + St be the consistent solution

= Good solution is f, = af + (1 — &)Tf with a > 0

Good choice of o
Noise energy ||e||. Then pick o such that
f - Tf

PP | A ST St 8
|f — Tf]|

If — TF|

e Assumes that noise is orthogonal to 7

© MERL December 16, 2015 13 /21
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3. Experiments
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Experiment I: Problem Setting

e Original signal f: w x w image
e Sampling subspace S: Sf = BsB5f, where
B5 : r X r averaging then downsampling
Bs : upsampling by copying each pixel in 7 x r block
e Guiding subspace 7: k x k low pass bandlimited DCT
o ksale = (w/r)/k: relative dimensionality of S and T
kscale < 1 : undersampling

Kecale > 1 : oversampling
(@© MERL December 16, 2015 15 /21
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Experiment Il: Noiseless Reconstruction

f.: Consistent, f, = Tf.: Generalized, f,, = TSf: minimax regret (Eldar et a/06)

28
26
824
o
522
a
20
-,
% % 0.5 1
scale o
(a) a=0.7 (b) kscale = 4

o kecale < 1 (undersampling): f. = f'g better than £,
® ksale > 1 (oversampling): £, better than f'g and £

e Since samples are noiseless, reconstruction improves as « increases
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Experiment lll: Reconstruction in the Presence of Noise

e Sf' = Sf + e, where e is iid N(0,0.001) = aope = 0.7

23
22
g g
21 o
4 b4
4 4
20|
B
190 0.5 1
o
(a) kscale =4
(a) Sf’, 21.69dB (b) £,, 19.73dB (c) f., 22.00dB (d) fu=0.7, 22.88dB
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4. Conclusion and Future Work
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Conclusion

e Unified view of different reconstruction methods
e Novel formulation of the reconstruction set
o Efficient reconstruction algorithm for finding the reconstruction set

o Connection with regularization and reconstruction with noisy samples

Future work
e Error bounds based on
® noise
e model mismatch

e relative positions of S and T

e Applications in other areas: speech, video, machine learning
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