

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts

Guided Signal Reconstruction with Application to Image Magnification

Akshay Gadde (USC, MERL) Speaker: Andrew Knyazev (MERL) Hassan Mansour (MERL) Dong Tian (MERL)

3rd IEEE Global Conference on Signal & Information Processing Orlando, Florida, USA December 14-16 2015

Outline

1. Introduction

- Problem Definition and Motivation
- Related Work

2. Reconstruction Set

- Geometric Interpretation
- Algorithm for Finding the Reconstruction Set
- Relation to Regularized Reconstruction

3. Experiments

4. Conclusion and Future Work

Outline

1. Introduction

- Problem Definition and Motivation
- Related Work

2. Reconstruction Set

- Geometric Interpretation
- Algorithm for Finding the Reconstruction Set
- Relation to Regularized Reconstruction

3. Experiments

4. Conclusion and Future Work

MITSUBISHI ELECTRIC Changes for the Better

Problem Definition

- Lossy measurements
- Prior information about the signal \Rightarrow Guiding subspace $\mathcal{T} \subset \mathcal{H}$

 $\mathbf{f} \in \mathcal{T}$ or $\|\mathbf{T}^{\perp}\mathbf{f}\|$ small

for a greener tomorrow

Problem Definition

- Lossy measurements
- Prior information about the signal \Rightarrow Guiding subspace $\mathcal{T} \subset \mathcal{H}$

 $\mathbf{f} \in \mathcal{T}$ or $\|\mathbf{T}^{\perp}\mathbf{f}\|$ small

Questions

Conditions on ${\mathcal S}$ and ${\mathcal T}$ for:

- Uniqueness of reconstruction
- Stability of reconstruction
- Efficient algorithm for reconstruction
- Effect of noise and model mismatch

Motivation

Image magnification

- $\mathcal{S}: 2 \times 2$ averaging
- \mathcal{T} : low pass DCT

Motivation

Image magnification

- $S: 2 \times 2$ averaging
- \mathcal{T} : low pass DCT

 Semi-supervised learning

- $\mathcal{S} = \{\mathbf{x} | \mathbf{x}_{\mathcal{U}} = \mathbf{0}\}$
- \mathcal{T} : low pass GFT

$$\mathcal{T} = \left\{ \sum_{i=1}^{K} c_i \mathbf{u}_i \right\},\,$$

 $\{\mathbf{u}_i\}$ e.v.'s of graph \mathbf{L}

Motivation

Image magnification

- $\mathcal{S}: 2 \times 2$ averaging
- \mathcal{T} : low pass DCT

 Semi-supervised learning

- $S = \{\mathbf{x} | \mathbf{x}_{\mathcal{U}} = \mathbf{0}\}$
- \mathcal{T} : low pass GFT

$$\mathcal{T} = \left\{ \sum_{i=1}^{K} c_i \mathbf{u}_i \right\},\,$$

 $\{\mathbf{u}_i\}$ e.v.'s of graph \mathbf{L}

• Bandwidth expansion of speech

- S : low pass DFT
- \mathcal{T} : learned from data

Related Work: Consistent Reconstruction

• Consistent reconstruction $\hat{\mathbf{f}} \Leftrightarrow \mathbf{S}\hat{\mathbf{f}} = \mathbf{S}\mathbf{f}$ (Unser and Aldroubi'94, Eldar'03)

Existence and Uniqueness

- Consistent reconstruction exists in $\mathcal T$ for any $\mathbf f\in \mathcal H$

$$\mathsf{iff} \ \mathcal{T} + \mathcal{S}^{\perp} = \mathcal{H}$$

Consistent reconstruction is unique

$$\mathsf{iff} \ \mathcal{T} \cap \mathcal{S}^{\perp} = \{\mathbf{0}\}$$

Related Work: Consistent Reconstruction

• Consistent reconstruction $\hat{\mathbf{f}} \Leftrightarrow \mathbf{S}\hat{\mathbf{f}} = \mathbf{S}\mathbf{f}$ (Unser and Aldroubi'94, Eldar'03)

Existence and Uniqueness

- Consistent reconstruction exists in ${\mathcal T}$ for any ${\mathbf f} \in {\mathcal H}$

$$\mathsf{iff} \ \mathcal{T} + \mathcal{S}^{\perp} = \mathcal{H}$$

• Consistent reconstruction is unique

$$\mathsf{iff} \ \mathcal{T} \cap \mathcal{S}^{\perp} = \{\mathbf{0}\}$$

• Under the above assumptions

 $\hat{\mathbf{f}} = \mathbf{P}_{\mathcal{T} \perp \mathcal{S}} \mathbf{f}$ (oblique projection)

- If $\mathbf{f} \in \mathcal{T}$ then $\hat{\mathbf{f}} = \mathbf{f}$
- If *T* ∩ *S*[⊥] ≠ {0} (non-unique consistent solutions), pick one by imposing additional constraints

Related Work: Generalized Reconstruction

- Existence of consistent reconstruction needs $\mathcal{T}+\mathcal{S}^{\perp}=\mathcal{H}$
- Can lead to unstable reconstructions (if min. gap between $\mathcal T$ and $\mathcal S$ is large)
- Oversampling for stability can cause $\mathcal{T}+\mathcal{S}^{\perp}\subset\mathcal{H}$

Generalized reconstruction

- Sample consistent plane $\mathbf{S}\mathbf{f}+\mathcal{S}^{\perp}$
- $\hat{\mathbf{f}} \in \mathcal{T}$ closest to $\mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}$ (relax $\mathbf{S}\mathbf{f} = \mathbf{S}\hat{\mathbf{f}}$)

$$\hat{\mathbf{f}} = \mathbf{P}_{\mathcal{T} \perp \mathbf{S}(\mathcal{T})} \mathbf{f}$$

Related Work: Generalized Reconstruction

- Existence of consistent reconstruction needs $\mathcal{T}+\mathcal{S}^{\perp}=\mathcal{H}$
- Can lead to unstable reconstructions (if min. gap between $\mathcal T$ and $\mathcal S$ is large)
- Oversampling for stability can cause $\mathcal{T}+\mathcal{S}^\perp\subset\mathcal{H}$

Generalized reconstruction

- Sample consistent plane $\mathbf{S}\mathbf{f}+\mathcal{S}^{\perp}$
- $\hat{\mathbf{f}} \in \mathcal{T}$ closest to $\mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}$ (relax $\mathbf{S}\mathbf{f} = \mathbf{S}\hat{\mathbf{f}}$)

$$\hat{\mathbf{f}} = \mathbf{P}_{\mathcal{T} \perp \mathbf{S}(\mathcal{T})} \mathbf{f}$$

Question: $\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}$ (consistent) or $\hat{\mathbf{f}} \in \mathcal{T}$ (generalized) or something else?

Outline

1. Introduction

- Problem Definition and Motivation
- Related Work

2. Reconstruction Set

- Geometric Interpretation
- Algorithm for Finding the Reconstruction Set
- Relation to Regularized Reconstruction

3. Experiments

4. Conclusion and Future Work

Reconstruction Set

- sample consistent place $\mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}$
- guiding subspace ${\mathcal T}$

Reconstruction set

Shortest pathway between the consistent place and the guiding subspace

$$\min_{\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}} \min_{\mathbf{t} \in \mathcal{T}} \|\hat{\mathbf{f}} - \mathbf{t}\| = \min_{\substack{\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f} + \mathcal{S}^{\perp} \\ \mathbf{t} \in \mathcal{T}}} \|\hat{\mathbf{f}} - \mathbf{t}\| = \min_{\mathbf{t} \in \mathcal{T}} \min_{\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}} \|\hat{\mathbf{f}} - \mathbf{t}\|$$

- $\hat{\mathbf{f}}$: consistent reconstruction
- t: generalized reconstruction

Iterative Consistent Reconstruction Using Cojugate Gradient

Consistent reconstruction

$$\inf_{\hat{\mathbf{f}}} \|\mathbf{T}^{\perp}\mathbf{f}\| \quad \text{subject to} \quad \mathbf{S}\hat{\mathbf{f}} = \mathbf{S}\mathbf{f}$$

Iterative Consistent Reconstruction Using Cojugate Gradient

• Consistent reconstruction

$$\inf_{\hat{\mathbf{f}}} \| \mathbf{T}^{\perp} \mathbf{f} \| \quad \text{subject to} \quad \mathbf{S} \hat{\mathbf{f}} = \mathbf{S} \mathbf{f}$$

Consistent reconstruction using CG

Define $\hat{\mathbf{x}} = (\hat{\mathbf{f}} - \mathbf{S}\mathbf{f}) \in \mathcal{S}^{\perp}$. Then the above problem is equivalent to solving

$$(\mathbf{S}^{\perp}\mathbf{T}^{\perp})\big|_{\mathcal{S}^{\perp}}\mathbf{x} = -\mathbf{S}^{\perp}\mathbf{T}^{\perp}\mathbf{S}\mathbf{f} \qquad (\mathbf{S}\mathbf{f}: \text{ measurement})$$

- Restriction of $\mathbf{S}^{\perp}\mathbf{T}^{\perp}$ to \mathcal{S}^{\perp} is self-adjoint
- Use CG with initialization $\mathbf{x}_0 \in \mathcal{S}^{\perp}$
- CG: most efficient iterative method for solving linear systems
- Frame-less algorithm: Needs only the (approximate) projector T

Finding the Reconstruction Set

$$\min_{\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}} \min_{\mathbf{t} \in \mathcal{T}} \|\hat{\mathbf{f}} - \mathbf{t}\| = \min_{\substack{\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f} + \mathcal{S}^{\perp} \\ \mathbf{t} \in \mathcal{T}}} \|\hat{\mathbf{f}} - \mathbf{t}\| = \min_{\mathbf{t} \in \mathcal{T}} \min_{\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f} + \mathcal{S}^{\perp}} \|\hat{\mathbf{f}} - \mathbf{t}\|$$

- $\hat{\mathbf{f}}$: consistent reconstruction
- t: generalized reconstruction
- Relation between $\hat{\mathbf{f}}$ and \mathbf{t}

 $\mathbf{t}=\mathbf{T}\hat{\mathbf{f}}$

Finding the Reconstruction Set

$$\min_{\hat{\mathbf{f}}\in\mathbf{S}\mathbf{f}+\mathcal{S}^{\perp}}\min_{\mathbf{t}\in\mathcal{T}}\|\hat{\mathbf{f}}-\mathbf{t}\| = \min_{\substack{\hat{\mathbf{f}}\in\mathbf{S}\mathbf{f}+\mathcal{S}^{\perp}\\\mathbf{t}\in\mathcal{T}}}\|\hat{\mathbf{f}}-\mathbf{t}\| = \min_{\mathbf{t}\in\mathcal{T}}\min_{\hat{\mathbf{f}}\in\mathbf{S}\mathbf{f}+\mathcal{S}^{\perp}}\|\hat{\mathbf{f}}-\mathbf{t}\|$$

- $\hat{\mathbf{f}}$: consistent reconstruction
- t: generalized reconstruction

- Relation between
$$\hat{\mathbf{f}}$$
 and \mathbf{t}

 $\mathbf{t}=\mathbf{T}\hat{\mathbf{f}}$

Reconstruction Set = { $\alpha \hat{\mathbf{f}} + (1 - \alpha) \mathbf{T} \hat{\mathbf{f}}$, where $\alpha \in [0, 1]$ }

Connection with Regularization

Reconstruction by regularization

$$\inf_{\hat{\mathbf{f}}_{\rho}} \left\| \mathbf{S} \hat{\mathbf{f}}_{\rho} - \mathbf{S} \mathbf{f} \right\|^{2} + \rho \left\| \left(\hat{\mathbf{f}}_{\rho} - \mathbf{T} \hat{\mathbf{f}}_{\rho} \right) \right\|^{2}, \quad \rho > 0$$

Connection with Regularization

Reconstruction by regularization

$$\inf_{\hat{\mathbf{f}}_{\rho}} \left\| \mathbf{S} \hat{\mathbf{f}}_{\rho} - \mathbf{S} \mathbf{f} \right\|^{2} + \rho \left\| \left(\hat{\mathbf{f}}_{\rho} - \mathbf{T} \hat{\mathbf{f}}_{\rho} \right) \right\|^{2}, \quad \rho > 0$$

Theorem (Reconstruction set and Regularization)

Let $\hat{\mathbf{f}}$ be the consistent reconstruction given by

 $\inf_{\hat{\mathbf{f}}} \|\mathbf{T}^{\perp}\mathbf{f}\| \quad \text{subject to} \quad \mathbf{S}\hat{\mathbf{f}} = \mathbf{S}\mathbf{f}.$

The reconstruction set is given by $\{\hat{\mathbf{f}}_{\alpha} = \alpha \hat{\mathbf{f}} + (1 - \alpha)\mathbf{T}\hat{\mathbf{f}}, \text{ where } 0 \leq \alpha \leq 1\}$. Then $\hat{\mathbf{f}}_{\alpha}$ is a solution of the regularized reconstruction problem with $\rho = (1 - \alpha)/\alpha$.

If a unique
$$\hat{\mathbf{f}} \in \mathcal{T} \cap (\mathbf{S}\mathbf{f} + \mathcal{S}^{\perp})$$
 exists, then $\hat{\mathbf{f}}_{\rho} = \hat{\mathbf{f}} = \mathbf{T}\hat{\mathbf{f}} \quad \forall \ \rho > 0$

• No need to re-solve the regularization problem if ρ changes

.

Reconstruction in the Presence of Noise

- Noisy measurements: $\mathbf{S}\mathbf{f}' = \mathbf{S}\mathbf{f} + \mathbf{e} \Rightarrow \text{Original signal } \mathbf{f} \notin (\mathbf{S}\mathbf{f}' + \mathcal{S}^{\perp})$
- Trust the guiding more than the samples
- Let $\hat{\mathbf{f}} \in \mathbf{S}\mathbf{f}' + \mathcal{S}^{\perp}$ be the consistent solution
 - \Rightarrow Good solution is $\hat{\mathbf{f}}_{\alpha} = \alpha \hat{\mathbf{f}} + (1 \alpha) \mathbf{T} \hat{\mathbf{f}}$ with $\alpha > 0$

Good choice of $\boldsymbol{\alpha}$

Noise energy $\|\mathbf{e}\|$. Then pick α such that

$$1 - \alpha = \frac{\|\mathbf{e}\|}{\|\hat{\mathbf{f}} - \mathbf{T}\hat{\mathbf{f}}\|} \Rightarrow \hat{\mathbf{f}}_{\alpha} = \hat{\mathbf{f}} - \|\mathbf{e}\| \frac{\hat{\mathbf{f}} - \mathbf{T}\hat{\mathbf{f}}}{\|\hat{\mathbf{f}} - \mathbf{T}\hat{\mathbf{f}}\|}$$

• Assumes that noise is orthogonal to ${\mathcal T}$

Outline

1. Introduction

- Problem Definition and Motivation
- Related Work

2. Reconstruction Set

- Geometric Interpretation
- Algorithm for Finding the Reconstruction Set
- Relation to Regularized Reconstruction

3. Experiments

4. Conclusion and Future Work

Experiment I: Problem Setting

- Original signal f: $w \times w$ image
- Sampling subspace $\mathcal{S} \colon \, \mathbf{S} \mathbf{f} = \mathbf{B}_{\mathcal{S}} \mathbf{B}_{\mathcal{S}}^* \mathbf{f}$, where

 $\mathbf{B}_{\mathcal{S}}^*: r \times r$ averaging then downsampling

 $\mathbf{B}_{\mathcal{S}}$: upsampling by copying each pixel in $r \times r$ block

- Guiding subspace \mathcal{T} : $k \times k$ low pass bandlimited DCT
- $k_{\sf scale} = (w/r)/k$: relative dimensionality of ${\cal S}$ and ${\cal T}$

 $k_{\rm scale} < 1$: undersampling

 $k_{\text{scale}} > 1$: oversampling

Experiment II: Noiseless Reconstruction

 $\hat{\mathbf{f}}_c$: Consistent, $\hat{\mathbf{f}}_g = \mathbf{T}\hat{\mathbf{f}}_c$: Generalized, $\hat{\mathbf{f}}_m = \mathbf{TSf}$: minimax regret (Eldar *et al*'06)

- $k_{\sf scale} < 1$ (undersampling): $\hat{\mathbf{f}}_c = \hat{\mathbf{f}}_g$ better than $\hat{\mathbf{f}}_m$
- $k_{\sf scale} > 1$ (oversampling): $\hat{\mathbf{f}}_c$ better than $\hat{\mathbf{f}}_g$ and $\hat{\mathbf{f}}_m$
- Since samples are noiseless, reconstruction improves as α increases

Experiment III: Reconstruction in the Presence of Noise

• $\mathbf{Sf}' = \mathbf{Sf} + \mathbf{e}$, where \mathbf{e} is iid $\mathcal{N}(0, 0.001) \Rightarrow \alpha_{\mathsf{opt}} = 0.7$

Outline

1. Introduction

- Problem Definition and Motivation
- Related Work

2. Reconstruction Set

- Geometric Interpretation
- Algorithm for Finding the Reconstruction Set
- Relation to Regularized Reconstruction

3. Experiments

4. Conclusion and Future Work

Conclusion

- Unified view of different reconstruction methods
- Novel formulation of the reconstruction set
- Efficient reconstruction algorithm for finding the reconstruction set
- Connection with regularization and reconstruction with noisy samples

Future work

- Error bounds based on
 - noise
 - model mismatch
 - relative positions of ${\mathcal S}$ and ${\mathcal T}$
- Applications in other areas: speech, video, machine learning

References I

Akshay Gadde, Aamir Anis, and Antonio Ortega. Active semi-supervised learning using sampling theory for graph signals. Accepted in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2014.

Sunil K Narang, Akshay Gadde, Eduard Sanou, and Antonio Ortega.

Localized iterative methods for interpolation in graph strutured data.

In IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 491–494, 2013.

Yonina C Eldar and Tsvi G Dvorkind.

A minimum squared-error framework for generalized sampling. Signal Processing, IEEE Transactions on, 54(6):2155–2167, 2006.

Yonina C Eldar.

Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors.

Journal of Fourier Analysis and Applications, 9(1):77–96, 2003.

References II

Michael Unser and Akram Aldroubi.

A general sampling theory for nonideal acquisition devices. Signal Processing, IEEE Transactions on, 42(11):2915–2925, 1994.

Ben Adcock and Anders C Hansen.

A generalized sampling theorem for stable reconstructions in arbitrary bases. *Journal of Fourier Analysis and Applications*, 18(4):685–716, 2012.

Peter Berger and Karlheinz Grchenig.

Sampling and reconstruction in different subspaces by using oblique projections. Technical Report arXiv:1312.1717 [math.NA], December 2013.

- Dhananjay Bansal, Bhiksha Raj, and Paris Smaragdis. Bandwidth expansion of narrowband speech using non-negative matrix factorization. In Ninth European Conference on Speech Communication and Technology, 2005.
 - A. Hirabayashi and M. Unser.

Consistent sampling and signal recovery.

Signal Processing, IEEE Transactions on, 55(8):4104–4115, Aug 2007.