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Introduction

Motivation
•Graph learning is key for clustering and semi-supervised learning

•Nearest neighbor graphs are the most widely used

•Recently graph learning from smooth signals

•Goal: clear and easily accessible graph learning algorithm

Contributions
•Novel algorithm: We formulate the graph learning problem as a

constraint quadratic program in the graph’s edge weights

•We quantify signal smoothness in terms of total variation

• For noisy data we combine graph learning with total variation
denoising

•All parameters in our scheme have a natural interpretation

•We demonstrate in numerical experiments that our learning al-
gorithm is well suited for cluster/community detection

Noise-free Graph Learning

•Given data: graph signal vectors xm ∈ RN , m = 1, . . . ,M

•Graph: described by edge weights Wij, 1 ≤ i, j ≤ N

•Signal smoothness: quantified in terms of total variation

‖xm‖TV =

N∑
i=1

N∑
j=1

|xm,i − xm,j|Wij

•Construct edge weights Wij with small value

M∑
m=1

‖xm‖TV = tr{WD},

with discrepancy matrix D(X) ∈ RN×N

Dij =

M∑
m=1

|xm,i − xm,j|

•Basic optimization problem:

min
W

tr{WD(X)} + β

2
‖W‖2F

s.t. W = WT ≥ 0.

diag(W) = 0,

‖W‖1 = 2N

•Solution:

Wij =
1

β
(ν −Dij)+

with ν determined by∑
j

∑
j

(ν −Dij)+ = β 2N

•Sparsity: β controls the number of edges of the graph

Weight and Degree Constraints:
•We can incorporate node degree constraints a ≤W1 ≤ b

•We can incorporate upper bounds on the weights Wij ≤ c

• a = b = 21 and c = 2/L yields a graph where all nodes have
weighted node degree 2 and at least L neighbors

•The resulting constraint quadratic program can be solved via
ADMM or interior point methods

Graph Learning from Noisy Data

•Given data: Y = (y1, . . . ,yM) are noisy measurements of
unknown actual graph signals X = (x1, . . . ,xM)

•Strategy: We propose to simultaneously learn the graph and
denoise the data

•The optimization problem:

min
W,X

tr{WD(X)} + β

2
‖W‖2F

s.t. W = WT ≥ 0

diag(W) = 0

‖W‖1 = 2N,

a ≤W1 ≤ b

‖xm − ym‖2 ≤ ε

•Noise level: ε controls the amount of measurement noise

Solving the optimization problem
•The total variation term

tr{WD(X)} =
M∑
m=1

‖xm‖TV =
∑
i

∑
j

M∑
m=1

Wij |xm,i − xm,j|,

is not jointly convex in W and X

•Calculate a local minimum by alternately performing

– minimization w.r.t. W: graph learning

– minimization w.r.t. X: signal denoising

Algorithm 1 TV-based graph learning and denoising

Input: Y = (y1, . . . ,yM), β, a, b, c, ε

Initialize: X̂ = Y
1: repeat

2: compute D(X̂)

3: learn the weights Ŵ on the current graph signal
estimates X̂

4: for m = 1, . . . ,M do

update x̂m by solving

min
xm

‖xm‖TV =

N∑
i=1

N∑
j=1

|xm,i − xm,j| Ŵij

s.t. ‖xm − ym‖2 ≤ ε,

5: end for

6: Set X̂ = (x̂1, . . . , x̂M)

7: until stopping criterion is satisfied

Output: Ŵ, X̂

• Signal denoising (step 4) can be solved efficiently via augmented
ADMM or primal dual algorithms

Simulation Results

•We consider a graph consisting of three clusters with 30, 40 and
50 nodes

•Nodes within the same cluster are all connected and there are
no edges between different clusters

•Graph signals are piecewise constant on the clusters

•The cluster signal values are drawn from a standard Gaussian
distribution

•The observed data consists of M = 50 graph signals that are
corrupted by zero-mean Gaussian noise with average power σ2

•The signal-to-noise ratio was −3 dB
•The bound on the empirical errors was set to ε =

√
Nσ

• β was chosen such that in the unconstrained setup each node is
guaranteed to have at least one neighbor in the learned graph

•The reconstruction performance is assessed via the F-score, the
harmonic mean of edge precision and recall. The better the
learned graph approximates the ground truth, the closer the F-
score is to 1.

•Comparison algorithm: diagonally dominant generalized Lapla-
cian (DDGL) by Egilmez, Pavez, Ortega 2016

Edge weight matrix W with pure graph learning,
a = b = 21, F-score 0.61
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Edge weight matrix W with graph learning and
denoising, a = b = 21, F-score 1
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F-score vs. SNR for different learning schemes
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