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Introduction

Motivation

e Graph learning is key for clustering and semi-supervised learning
® Nearest neighbor graphs are the most widely used

® Recently graph learning from smooth signals

® Goal: clear and easily accessible graph learning algorithm

Contributions

® Novel algorithm: We formulate the graph learning problem as a
constraint quadratic program in the graph's edge weights

e \WWe quantify signal smoothness in terms of total variation

® For noisy data we combine graph learning with total variation
denoising

e All parameters in our scheme have a natural interpretation

® \We demonstrate in numerical experiments that our learning al-
gorithm is well suited for cluster/community detection

Noise-free Graph Learning

e Given data: graph signal vectors x” e RY, m=1,.... M
e Graph: described by edge weights W;;, 1 <1i,5 < N
e Signal smoothness: quantified in terms of total variation
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® Construct edge weights W;; with small value

M
> xmllry = tr{ WD},
m=1

with discrepancy matrix D(X) € RY*Y

M
D;j = Z \xmz — xm,j’
m=1

e Basic optimization problem:

nin {WD(X)} + 5w

st. W=W!>0.
diag(W) = 0,
W1 =2N
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e Solution: .
Wij = E(V — Dij)+

with v determined by

>:>:(V_Dij)+ = 02N
] )

e Sparsity: 3 controls the number of edges of the graph

Weight and Degree Constraints:
® \We can incorporate node degree constraints a < W1 <b
® We can incorporate upper bounds on the weights IV;; < ¢

ea=Db =21 and ¢ =2/L yields a graph where all nodes have
weighted node degree 2 and at least L neighbors

® The resulting constraint quadratic program can be solved via
ADMM or interior point methods

Graph Learning from Noisy Data

e Given data: Y = (yy,...,yuy) are noisy measurements of
unknown actual graph signals X = (x1,...,X)/)

e Strategy: We propose to simultaneously learn the graph and
denoise the data

¢ The optimization problem:

win  r{WD(X)} + 5[ W]

WX

st. W=W! >0
diag(W) =0
W1 = 2N,
a<W1<b

Ixm — ymll2 < €

e Noise level: ¢ controls the amount of measurement noise

Solving the optimization problem

® [ he total variation term

H{WD(X)} = 3 Il =D >

<

Wij[2mi = m g1,

J m

L

is not jointly convex in W and X

¢ Calculate a local minimum by alternately performing

—minimization w.r.t. W: graph learning

—minimization w.r.t. X: signal denoising
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Algorithm 1 TV-based graph learning and denoising

Input: Y = (y1,...,yu), 8, a, b, ¢ ¢
Initialize: X =Y

1 repeat
2. compute D(X)
3 learn the weights W on the current graph signal

estimates X
4: form:L...,MdO

update x,,, by solving
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min ||| Ty = > . > NEmi — x| Wi
" i=1 j=1

S.t. HXm - Ym||2 S <,

5: end for
s Set X = (Xp,...,%Xu)
7. until stopping criterion is satisfied
Output: \/7\\7 X
N\ )

e Signal denoising (step 4) can be solved efficiently via augmented
ADMM or primal dual algorithms

Simulation Results

e \We consider a graph consisting of three clusters with 30, 40 and
50 nodes

e Nodes within the same cluster are all connected and there are
no edges between different clusters

e Graph signals are piecewise constant on the clusters

® The cluster signal values are drawn from a standard Gaussian
distribution

e The observed data consists of M = 50 graph signals that are
2

corrupted by zero-mean Gaussian noise with average power o
® [he signal-to-noise ratio was —3dB
® The bound on the empirical errors was set to ¢ = vV No

® 3 was chosen such that in the unconstrained setup each node is
guaranteed to have at least one neighbor in the learned graph

e The reconstruction performance is assessed via the F-score, the
harmonic mean of edge precision and recall. The better the
learned graph approximates the ground truth, the closer the F-
score Is to 1.

e Comparison algorithm: diagonally dominant generalized Lapla-

cian (DDGL) by Egilmez, Pavez, Ortega 2016
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Edge weight matrix W with pure graph learning,
a=b =21, F-score 0.61
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Edge weight matrix W with graph learning and
denoising, a = b = 21, F-score 1
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