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Introduction

• Connectivity analysis based on functional Magnetic Resonance

Imaging (fMRI) data helps to reveal insights on brain functioning

and disease analysis.

• For decades, an important metric in measuring functional con-

nectivities has been the Pearson correlation coefficient defined

as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
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• In recent years, mutual information (MI) has been applied as

an alternative metric since it measures not only linear dependence

between two time series but also non-linear relationships.

• For brain functional connectivity this means that MI can confirm

known functional connections as well as discovering new connec-

tions [1].

• The mutual information between two random variables X and Y

is defined as:

I(X;Y ) =

∞∫
−∞

∞∫
−∞

fXY (x, y)log
fXY (x, y)

fX(x)fY (y)
dxdy

• In words, MI is the information successfully transmitted through a

channel.
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Existing Approaches

• There has been a growing interest in applying MI on fMRI data

analysis:

– In [2], the authors used MI to build the brain activation map.

They showed that MI was robust in quantifying the relationship

between any two fMRI temporal response waveforms.

– In [3], MI has been applied in the activation detection, and

showed that MI is a more sensitive metric than the Jaccard

overlap metric.

– In [4], the authors applied MI in the decoding algorithm in

selecting features from high dimensional data, and showed that

MI was efficient in selecting very few but strongly informative

voxels.
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Limitations with the Existing Approaches

• In literature, a dominant approach for MI calculation has been the

k nearest neighbor (kNN) estimator.

• Given n samples with dimension d, the k nearest neighbor (kNN)

estimator calculates the probability density function (pdf) as:

f(−→xi) =
1

2

Γ(d/2 + 2)

πd/2
1

r(−→xi)d

where r(−→xi) is the Euclidean distance from −→xi to its kth nearest

neighboring points, and Γ(∗) the Gamma function.
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• There are several concerns related to the kNN estimator:

1. The choice of k is not a well-defined problem and usually solved

by heuristic techniques [5].

2. The choice of k is highly empirical. It involves trade-off between

the estimation bias and variance.

3. The algorithm can not be guaranteed to converge to the true

value when the data samples are not independently distributed.
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The Proposed Approach for MI Estimation

• To address the limitations above, we propose a novel approach to

estimate MI and measure brain functional connectivity.

• The major steps in the proposed method are:

1. De-correlate the data segments.

2. Apply Kernel-based estimation to estimate the probability density

function.

3. Use Monte Carlo Integration for MI estimation.
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De-correlation of Data Segments

• The data segments from the fMRI data are generally correlated

with each other, which introduces skewness in the distribution [6].

• We propose to adopt the whitening transform on the data segments

before estimating the probability density function.

• After de-correlation, the covariance matrix of the transformed data

is close to the identity matrix.
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• Given a d-dimensional data vector −→x , with mean −→µ and covariance

matrix Σ = E(−→x −−→µ )(−→x −−→µ )T .

• The covariance matrix can be decomposed as Σ = φΛφ−1, where Λ

is a diagonal matrix, with the eigenvalues as its diagonal elements,

and φ the eigenvectors of the covariance matrix.

• The whitening transform is defined as:

−→x ′ = AT−→x ,A = φΛ−1/2

• After the transform, the new data vector will have mean AT−→µ and

covariance I. That is:

E(AT−→x −AT−→µ )(AT−→x −AT−→µ )T = I
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Kernel-based Estimation of Probability Density Function

• The basic idea is to calculate the average of kernel functions K on

each point that falls into a pre-specified kernel window.

• Given a set of data points {εi|i = 1, · · ·m}, the kernel estimation

for the probability density function at any point x is given by:

f̂(x) =
1

m

m∑
i=1

K

(
x− εi
h

)
in which h is the bandwidth for the kernel function that needs to

be optimized.
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• For any d-dimensional data vector −→x = [x1, ..., xj, ..., xd], the

estimation function can be extended as:

f̂(−→x ) =
1

mh1h2...hd

m∑
i=1

Kh(−→x ,−→εi )

where

Kh(−→x ,−→εi ) =

d∏
j=1

K

(
xj − εij
hj

)

• The kernel function K for a continuous variable x is often chosen

as the Gaussian function [7]:

K(h, ε, x) =
1

2
√
π
e
−(x−ε)2

4h2
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Optimal Kernel Bandwidth Estimation

• The bandwidth h for the kernel function has a significant influence

on the estimation accuracy.

• h is chosen to maximize the leave-one-out log likelihood function

given by:

L =

m∑
i=1

logf̂−i(
−→εi )

where

f̂−i(
−→εi ) =

1

(m− 1)h1h2...hd

∑
j 6=i

Kh(−→εi ,−→εj )

• To optimize the likelihood function L, we applied downhill simplex

method in [8].
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MI Estimation Through Monte Carlo Integration

• The Monte Carlo integration method is used here to calculate the

MI after the probability distribution function has been obtained.

• Let i(−→x ,−→y ) = fXY (−→x ,−→y )log fXY (−→x ,−→y )
fX(−→x )fY (−→y )

. Then, to calculate the MI

I =
∫
Rd

∫
Rd

i(−→x ,−→y )d−→x d−→y , the algorithm uniformly samples a finite

space with a volume of V , and generates m samples {(−→xi,−→yi ), i =

1, 2, · · · ,m}.

• The mutual information, then, can be estimated as:

Im ≈
V

m

m∑
i=1

i(−→xi,−→yi )
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• Since the definition domain of a Gaussian function is infinite,

sampling on the whole space is impossible.

• We limit the sampling space within the interval [µ − 3σ, µ + 3σ],

where µ and σ denote the mean and standard deviation of the

Gaussian function, respectively.

• Convergence: It can be shown by the Law of Large Numbers (LLN):

as m goes to infinity, the approximation above will converge to the

real value of I, i.e., lim
m→∞

Im = I.
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Numerical Results

• Here, we apply the proposed approaches to resting state fMRI

data collected from both Alzheimer’s Disease patients and normal

control subjects.

• Brain networks operate in a cohesive manner of connections be-

tween nodes. A progressive weakening trend of functional connec-

tivities has been observed in the default mode network (DMN) in

AD patients [9]. In the following, we will evaluate MI between two

regions of DMN, the posterior cingulate cortex (PCC) and superior

frontal gyrus (SFG).

• In the data collection process, eleven patients with mild-to-

moderate probable AD and twelve healthy normal control subjects

were recruited to participate in this study.
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• Figure 1 shows the probability distribution function of calculated

mutual information for connections between PCC and SFG.

• As expected, the connections experienced a decrease in AD patients

compared to NC subjects.
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• Figure 2 shows the boxplots for the two groups of calculated mutual

information for connections between PCC and SFG.

• It can be seen that the median suffered a 35.6%’s decrease in AD

patients compared to NC subjects.
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Conclusion

• In this paper, we considered the measurement of functional brain

connectivities using mutual information.

• We proposed a novel approach for the estimation of MI, which

was composed of three major components: de-correlation, kernel

based estimation of probability density function and Monte Carlo

Integration for MI estimation.

• The analysis results obtained using the proposed method were

consistent with clinical observations in the AD data sets.
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