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Decomposition Type * Training data:

All words: letter newyork newyorkabc *
All words: letter 2-gram newyork newyorkabc ) MOdte
All words: letter 3-gram new yor k new yor kab ¢ .
All words: word newyork ooV .
OOVs only: single-letter newyork newyorkabc *
OOVs only: word+letter newyork newyork abc

OOVs only: word+letter 3-gram newyork newyork abc

Table 1: Examples of how words are represented with different units

Vanilla Attention 5-
layer sharing

4. Experiments

3400 hours of transcribed US-English Cortana audio

6-layer bi-directional LSTM, every layer has 512 memory units in each direction
Bi-directional CTC with CD-phone targets and 100M 5-gram: 9.28% WER.

All end-to-end (E2E) models use greedy decoding without LM.

Bi-directional CTC with word targets gets 9.84% WER. OOV token contributes 1.87% WER

E2E CTC Model WER__| # of units

Word-based 0.84 27k
Hybrid: Word-based + letter 2-gram Attention 9.66 27k
Hybrid: Word-based + letter 3-gram Attention 9.66 35k
Mixed (OQV: letter) 20.10 27k
Mixed (OOV: word + letter) 10.17 27k
Mixed (OOV: word + letter 2-gram) 9.58 27k
Mixed (OOV: word + letter 3-gram) 9.32 33k
Mixed (OOV: word + letter 3-gram) Attention 8.65 33k

Table 3: WERs of E2E CTCs

letter 17.54 14.30 16.74
letter 2-gram 15.37 12.16 14.00 0.7k
letter 3-gram 13.28 11.36 12.81 8.9 k
Table 2: WERs of letter-based CTC models
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5. Conclusions

* Advance acoustic-to-word CTC model with a mixed-unit CTC
* Frequent word: model it with a unique output node.
« OOV word: we decompose it into a sequence of frequent words and letter n-grams.

* Mixed-unit CTC is simpler and more effective than the 2-stage hybrid CTC which
needs shared-hidden-layer to maintain the time synchronization of word outputs
between the word-based and letter-based CTCs.

* The acoustic-to-word CTC with mixed-units reduces relative 5.28% WER from the
vanilla word-based CTC, and reduces relative 12.09% WER if combined with the
attention CTC.

* The final acoustic-to-word CTC outperforms the traditional context-dependent-
phoneme CTC with strong LM and decoder by relative 6.79% WER reduction.

* It also provides more meaningful output without outputting any OOV token to

distract users even if it cannot get the right words.

 E.g., recognizes “text fabine” as “text fabian” and “call zubiate” as “call zubiat”, while the
vanilla word-based CTC can only output “text OOV” and “call OOV”.



