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Motivation
I Speech dereverberation fundamental for enabling far-field human-

computer interaction, particularly with the recent advent of smart
loudspeaker devices (e.g., Sonos One ,).

I Blind methods based on multi-channel linear prediction (MCLP)
applied in the STFT-domain particularly effective for the task:
I no prior knowledge of the room acoustics,
I relatively easy and cheap to implement.

I Popular MCLP-based methods look for a sparse desired speech
signal, assuming reverberation as a convolutive process (approxi-
mated by the predicted speech) on a STFT bin-by-bin basis. This
is done by applying nonconvex algorithms [1, 2].

I We propose alternative formulations for sparse approximation
based on convex optimization [3].

MCLP-based Dereverberation
I Focus on utterance-based batch processing
I Reverberant speech signal model at m−th mic m ∈ {1, ... , M}:

xm(k , n) =
τ−1∑
l=0

hm(k , l)s(k , n − l)︸ ︷︷ ︸
dm(k ,n)

+
Lg−1∑
l=τ

hm(k , l)s(k , n − l)︸ ︷︷ ︸
rm(k ,n)

(1)

I n ∈ {1, ... , N} frame index, k ∈ {1, ... , K} frequency bin index
I s(k , n): clean speech
I dm(k , n): desired speech
I rm(k , n): reverberation term
I hm(k , l) ATF between the speech source and the m-th microphone
I τ : delay to model direct speech and early reflections
I Lg : prediction order

I Desired speech signal using M predictors (order (Lg − 1)):

dm(k , n) = xm(k , n)−
M∑
i=1

Lg−1∑
l=0

xi (k , n − τ − l)gm,i (k , l) (2)

I gm,i (k , l): l−th prediction coefficient between the i−th and the m−th
channel

Group Sparse Linear Prediction
I The model in (2) in matrix form becomes [2]:

D(k ) = X(k )− Xτ (k )G(k ) (3)

with D(k ) = [d1(k ), · · · , dM (k )] ∈ CN×M

dm(k ) = [dm(k , 1), · · · , dm(k , N)]T ∈ CN×1

X(k ) = [x1(k ), · · · , xM (k )] ∈ CN×M

xm(k ) = [xm(k , 1), · · · , xm(k , N)]T ∈ CN×1

Xτ (k ) = [Xτ ,1(k ), · · · , Xτ ,M (k )] ∈ CN×MLg

G(k ) = [g1(k ), · · · , gM (k )] ∈ CMLg×M

gm(k ) = [gm,1(k , 0), · · · , gm,1(k , Lg − 1), ...

gm,M (k , 0), · · · , gm,M (k , Lg − 1)]T ∈ CMLg×1

I G in (3) is then found by solving the optimization problem:

Ĝ = argmin
G
‖ X− XτG ‖1

p,1 + α ‖G‖1
1,1 (4)

I ‖ · ‖1
p,1: V ∈ Cn×m, ‖V‖p,1 =

(∑n
i=1 ‖Vi ,:‖p

)
I ‖Vi ,:‖p is the `p norm of the i−th row-vector Vi ,:
I For p = 1, (4) is a element-wise regularized least-sum-of-absolute
I For p = 2, (4) is a group LASSO problem
I α ‖G‖1

1,1 regularization term meaning:
? ill-conditioning when closed-spaced microphones: XH

τ Xτ → singular
? model order selection penalization if Lg is not chosen appropriately

Convex Formulations
I Non-convex formulation (Iteratively Reweighted Least-Squares)

I `q norm (0 < q ≤ 1) approximated using IRLS. i−th step:

Ĝi = argmin
G
‖W1/2

i (X− XτG) ‖2
2

I with Wi = diag
(
wi), wi =

(
‖dn‖2

2 + ε
)q/2−1

, ∀n , updated from D̂i

I Least Absolute Devation (LAD)
I p = 1 in (4), problem is separable:

ĝm =argmin
gm

‖xm − Xτgm‖1+α‖gm‖1, m = 1, ... , M

I known ADMM formulation [3] for ĝm = argmingm

∥∥∥∥[xm

0

]
−
[
Xτ
αI

]
gm

∥∥∥∥
1

I Group LASSO (GL)
I p = 2 in (4), problem is non separable, i−th ADMM steps are:

1. Ĝi = (XH
τ Xτ + αI)−1 [αI XH

τ

](
Zi +

[
0
X

]
− Li

)
2. Ri =

[
αĜi

Xτ Ĝi − X

]
3. Zi+1 = St (Ri + Li )
4. Li+1 = Li + Ri − Zi+1

I where the proximity operator St (·) subproblem is separable
I Complexity: IRLS O((MLg)3 + N(MLg)2), ADMM O(M3L2

g)
I Code available at: https://github.com/giacobello/

Experimental Setup
I 6-microphone circular array of 72 mm diameter
I Performance evaluated by simulating artificial utterances that mimic real

use cases specific for voice enabled smart speakers:
I Room size: w ∈ [3, 8] m, l ∈ [3, 10] m h ∈ [2, 4] m
I Position: d ∈ [1, 7] m, azimuth θ ∈ [−180, 180], elevation φ ∈ [45, 135]
I Tuned reflection coefficients of cuboid to obtain T60 ∈ [300, 700] ms
I COMSOL R©used to solving the scalar wave equation using the finite element method

I diffuse HVAC noise, SNR ∈ [10, 30] dB (focus on dereverberation)
I ASR engine trained using the Librispeech 100hrs corpus: 100 hours of

clean speech, 125 male, 125 female speakers), audiobooks data
I STFT 50% overlap 32ms Hamming (fs = 16kHz). Lg = 10, τ = 2
I 100 iterations of ADMM, 5-7 iterations IRLS

Results

1 2 3 4 5 6 7
Distance [m]

10

15

20

25

30

35

40

W
E

R
 [

%
]

Results for large room (V>90 m3,T
60

>400ms) 

Clean

Reverberant

IRLS

Regularized IRLS

GL

RegularizedGL

LAD

Regularized LAD

Acknowledgments
This work (including D. Giacobello research stay at Aalborg University) was partly supported by the

Danish Council for Independent Research, grant no. 4005-00122.

References
[1] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang, “Speech dereverberation based on variance-normalized delayed linear prediction,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 7, pp. 1717–1731, 2010.
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