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Motivation

Speech dereverberation fundamental for enabling far-field human-
computer interaction, particularly with the recent advent of smart
loudspeaker devices (e.g., Sonos One ©).

Blind methods based on multi-channel linear prediction (MCLP)
applied in the STFT-domain particularly effective for the task:

» no prior knowledge of the room acoustics,

» relatively easy and cheap to implement.

Popular MCLP-based methods look for a sparse desired speech
signal, assuming reverberation as a convolutive process (approxi-
mated by the predicted speech) on a STFT bin-by-bin basis. This
Is done by applying nonconvex algorithms [1, 2].

We propose alternative formulations for sparse approximation
based on convex optimization [3].

MCLP-based Dereverberation
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Focus on utterance-based batch processing

Reverberant speech signal model at m—th mic me {1, ..., M}:
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» nec{1,...,N} frameindex, k € {1, ..., K} frequency bin index

» S(k, n): clean speech

» dn(k, n): desired speech

> rm(k, n): reverberation term

» hm(k, ) ATF between the speech source and the m-th microphone

» 7: delay to model direct speech and early reflections

> [, prediction order

Desired speech signal using M predictors (order (L; — 1)):
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> Ogmi(k,l): I—th prediction coefficient between the /—th and the m—th
channel
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Group Sparse Linear Prediction

» The model in (2) in matrix form becomes [2]:

D(k) = X(k) — X-(k)G(k) (3)
with D(k) = [d1(k), - ,dmu(k)] € C"*"

dn(k) = [dm(k, 1), -, dn(k, N)]" € CV

X(k) = [X1(k), - -, xu(k)] € VM
Xm(K) = [Xm(k, 1), -, xm(k, N)]" € CN*!
X, (k) = [Xr1(k), -, Xrm(k)] € CV*Mo

G(k) =[g1(k), - ,gm(k)] € C*"o*"
Im(kK) = [gm1(K,0), -+, gm1(k, Lg — 1), ...

gmm(K,0), -+, gmm(k, Lg — 1)]" € C"ox

» G in (3) is then found by solving the optimization problem:

G = argmin | X — X, G || + ||G]] ; (4)
G

Al VEC™ ™ [[Vlpr = (1 IVicllo)

V;||p is the £, norm of the i—th row-vector V; .

~or p =1, (4) Is a element-wise regularized least-sum-of-absolute
~or p = 2, (4) is a group LASSO problem

a |Gl 1 regularization term meaning:

* ill-conditioning when closed-spaced microphones: XX, — singular
* model order selection penalization if L, is not chosen appropriately
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Experimental Setup

6-microphone circular array of 72 mm diameter
Performance evaluated by simulating artificial utterances that mimic real
use cases specific for voice enabled smart speakers:

» Roomsize: w € [3,8]m,/ € [3,10lm h € [2,4] m
» Position: d € [1,7] m, azimuth 8 € [—180, 180], elevation ¢ € [45, 135]
» Tuned reflection coefficients of cuboid to obtain Tgp € [300, 700] ms

» COMSOL®used to solving the scalar wave equation using the finite element method
difftuse HVAC noise, SNR € [10, 30]dB (focus on dereverberation)

ASR engine trained using the Librispeech 100hrs corpus: 100 hours of
clean speech, 125 male, 125 female speakers), audiobooks data

STFT 50% overlap 32ms Hamming (fs = 16kHz). Ly =10, 7 =2

100 iterations of ADMM, 5-7 iterations IRLS
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Convex Formulations

» Non-convex formulation (lteratively Reweighted Least-Squares)
> /o, norm (0 < g < 1) approximated using IRLS. /—th step:

G' = argmin [|W;"* (X — X-G) |3
G
> with W' = diag (w'), ' = (||ds[}3 +€)** ", ¥n , updated from D'

» Least Absolute Devation (LAD)
» p=11In(4), problem is separable:

gm=argmin||X,m — Xogmll1+a||lgml|l1, m=1,....,.M
dm

» known ADMM formulation [3] for gm=argminglm Xm| _ | X dm
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» Group LASSO (GL) -
» p=2In (4), problem is non separable, i—th ADMM steps are:
1. G' = (XX, +al)™’ [al Xﬂ <Zi+ ;)( — Li>
X.G - X
3. 2" = SR + L)
4 Li+1 _ Li n Ri o Zi+1
» where the proximity operator S;(-) subproblem is separable
> Complexity: IRLS O((MLQ)3 + N(MLg)Z), ADMM O(M3L§)
» Code available at: https://github.com/giacobello/
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Results

Results for large room (V>90 m3,T60>400ms) .
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