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Introduction

Motivation

 Major limitation of deep learning: data-hungry
* Pixel-wise semantic labels are expensive

 Dataset bias is prevalent in many applications

Problem Definition

Source domain:
synthetic images with pixel-
wise semantic labels

Target domain:
unlabeled real
world images

 Goal: leverages labeled data in the source
domain, to learn a segmenter for unlabeled
data in a target domain

Datasets:

* Source Domain: GTAS (train/val/test: 16k/5k/4k)

* Target Domain: Cityscapes (train/val: 3,149/500)

* # Classes: 34 (19 classes are considered in
evaluation)

Related Work

Feature Distribution Alighnment

* Distance minimization: maximum mean
discrepancy, correlation alighment, etc.

* Adversarial training: domain discriminator

 Major limitation: Assume the existence of a
universal classifier that can perform well on
samples drawn from whichever domain

Methodology
Tri-training for Unsupervised Domain Adaptation

* Classifier 1 (C,) and Classifier 2 (C,) are trained with source domain data
* C, and C, assigns pseudo label to a target sample if:

1. C;and C, gives consistent prediction

2. At least one classifier has high confidence score
* C, learns from pseudo labels

FCTN Architecture and Training Scheme
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Step 1: Pre-train three branches

Step 2: Assign pseudo labels for target
domain images

Step 3: Joint train F, and F, with images
from both domains, and train Ft with
pseudo-labeled target images

Step 4: Repeat Step 2 and Step 3

=P : Forwarding of pseudo-labeled target samples

F: Shared base network
F,, F,: Labeling branches
F.: Target-specific branch
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Target Image

Target Pseudo Label

F: Shared base network
F,, F,: Labeling branches
F.: Target-specific branch

F: Shared base network
F,, F,: Labeling branches
F.: Target-specific branch

Pseudo-labeling Joint training

Encoding Prior Knowledge
e Layout of the traffic scene images
is unique and domain independent

Regularized Training

C, and C, CAN NOT be identical:
* |nitialize the two branches

differently * CNN is translation-invariant
* Incur a weight-constraint loss  Two additional feature maps to
among the convolutional kernels encode spatial information
of the two branches (F, and F, ): explicitly
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Quantitative Results

Experiments
Pseudo Labels (PL)
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Table 1: Adaptation from GTA to Cityscapes. All numbers are measured in %. The last three rows show our results before adaptation, after
one and two rounds of curriculum learning using the proposed FCTN, respectively.




