Université Fédérale

MOTIVATION

• Nonnegative matrix factorization (NMF) can be used to decompose a spectrogram $\mathbf{V} \in \mathbb{R}^{M \times N}$ into two nonnegative latent factors $\mathbf{W} \in \mathbb{R}^{M \times K}$ and $\mathbf{H} \in \mathbb{R}^{K \times N}$ which respectively encode spectral patterns (dictionary) and how these are mixed (activation).

• Results depend heavily on the time-frequency transform used for computing V.

• Can we learn a transform Φ so that V can be well approximated using NMF?

BASELINE : IS-NMF

Audio data

 $\mathbf{Y} \in \mathbb{R}^{M \times N}$: matrix that contains N adjacent and overlapping short-time *M*-wide frames of the sound sample *y*

IS-NMF with sparsity Minimize

$$D(|\mathbf{\Phi}_{\text{DCT}}\mathbf{Y}|^{\circ 2}|\mathbf{WH}) + \lambda \frac{M}{K} ||\mathbf{H}||_1$$

s.t. $\mathbf{W} \ge 0, \mathbf{H} \ge 0, \forall k, ||\mathbf{w}_k||_1 = 1$ (1)

with $D(\mathbf{A}|\mathbf{B}) = \sum_{ij} (a_{ij}/b_{ij} - \log(a_{ij}/b_{ij}) - 1)$ (Itakura-Saito divergence), factorization rank *K*

TRANSFORM LEARNING

Proposed TL-NMF (inspired from [1]) Minimize

$$C_{\lambda}(\mathbf{\Phi}, \mathbf{W}, \mathbf{H}) \stackrel{\text{def}}{=} D(|\mathbf{\Phi}\mathbf{Y}|^{\circ 2}|\mathbf{W}\mathbf{H}) + \lambda \frac{M}{K} ||\mathbf{H}||_{1}$$

s.t.
$$\mathbf{W} \ge 0, \mathbf{H} \ge 0, \forall k, ||\mathbf{w}_k||_1 = 1, \mathbf{\Phi}^T \mathbf{\Phi} = \mathbf{I}_M$$
(2)

Orthogonal constraint on Φ

• Gently departs from Φ_{DCT} • Avoids singularity along with trivial solutions such as $(\Phi, W, H) = (0, 0, 0)$

• Easy inversion for synthesis

NONNEGATIVE MATRIX FACTORIZATION WITH TRANSFORM LEARNING Dylan Fagot, Herwig Wendt and Cédric Févotte

CNRS, IRIT, University of Toulouse

PROPOSED ALGORITHM

Algorithm 1: TL-NMF

Input : $\mathbf{Y}, \tau, K, \lambda$ Output: Φ , W, H Initialize Φ , W and H at random while $\epsilon > \tau$ do Update **H** Update W Update Φ (new) Compute stopping criterion ϵ end

Update of H and W

Majoration-minimization leading to standard mutliplicative updates [2]

Update of Φ

Projected gradient descent onto the orthogonal matrices manifold following [3]

1) Compute gradient ∇ of the objective function

2) Compute natural gradient $\mathbf{\Omega} = \mathbf{\Phi} \nabla^T \mathbf{\Phi} - \nabla$

3) Find a suitable stepsize γ satisfying Armijo rule on the manifold

4) Update the transform via a projection onto the manifold as $\mathbf{\Phi} \leftarrow \pi \left(\mathbf{\Phi} + \gamma \mathbf{\Omega} \right)$

Resolve sign ambiguity on Φ by imposing its first column entries to be positive

REFERENCES

[1] S. Ravishankar and Y. Bresler, "Learning sparsifying transforms," IEEE T. Signal Process., 2013.

[2] C. Févotte and J. Idier, "Algorithms for nonnegative matrix factorization with the β -divergence," Neural Comput., 2011.

[3] J. H. Manton, "Optimization algorithms exploiting unitary constraints," IEEE T. Signal Process., 2002.

MUSIC DECOMPOSITION

Setup

Results

TL-NMF reaches similar objective function values despite random initialization

 $\lambda = 0$

Rows of Φ become oscillatory and smoother as λ increases

Atoms form pairs in phase quadrature

23 s long excerpt from *Mamavatu* by Susheela Raman using 50% overlapping 40 ms-long sine bell windows with factorization rank K = 10

$\lambda = 10^3 \qquad \qquad \lambda = 10^6 \qquad \qquad$
ht atoms loarnt by TL NIME from random

Six most significant atoms learnt by TL-NMF from random initializations

Setup Separate a sound sample as $y = \hat{y}_{sp} + \hat{y}_{no}$ based on the reference data • $\mathbf{Y}_{sp} \in \mathbb{R}^{M \times N_{sp}}$, speech female speaker (21 s) • $\mathbf{Y}_{no} \in \mathbb{R}^{M \times N_{no}}$, bus noise (30 s)

as

where $\mathbf{W}_{sp} = |\mathbf{\Phi}_{DCT} \mathbf{Y}_{sp}|^{\circ 2}$, $\mathbf{W}_{no} = |\mathbf{\Phi}_{DCT} \mathbf{Y}_{no}|^{\circ 2}$ and \mathbf{H}_{sp} , \mathbf{H}_{no} are subject to a sparsity constraint.

Minimize $C_{\Lambda}(\mathbf{\Phi},$ $D\left(|\mathbf{\Phi}\rangle\right)$

 Φ now appears in both sides of the divergence

Results Sound sample generated by mixing a speech utterance with a bus noise at two different SNR

Method	SDR (dB)		SIR (dB)		SAR (dB)	
SNR = -10 dB	$\hat{y}_{ extsf{sp}}$	\hat{y}_{no}	$\hat{y}_{ extsf{sp}}$	\hat{y}_{no}	$\hat{y}_{ extsf{sp}}$	\hat{y}_{no}
Baseline	-9.50	10.00	-9.50	10.00	∞	∞
IS-NMF	-6.75	6.82	-5.00	13.95	4.12	7.93
TL-NMF	1.73	12.29	13.44	13.33	2.22	19.20
SNR = 0 dB	$\hat{y}_{ ext{sp}}$	\hat{y}_{no}	$\hat{y}_{ ext{sp}}$	\hat{y}_{no}	$\hat{y}_{ extsf{sp}}$	\hat{y}_{no}
Baseline	0.10	0.08	0.10	0.08	∞	∞
IS-NMF	1.73	0.69	3.06	5.32	9.30	3.65
TL-NMF	6.50	5.81	12.11	9.16	8.16	9.00

CONCLUSION

gorithm oscillatory atoms

SUPERVISED SEPARATION

 $\mathbf{V} pprox \mathbf{W}_{sp} \mathbf{H}_{sp} + \mathbf{W}_{no} \mathbf{H}_{no}$ (3)

Separation with TL-NMF

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(6)$$

Comparison using BSS_eval metrics with baseline ($\hat{y}_{sp} = \hat{y}_{no} = y/2$) and IS-NMF with sparsity $\lambda_{\rm sp} = \lambda_{\rm no} = \lambda$ was fixed manually

• Introduction of transform learning for NMF • Proposal of a new block-coordinate descent al-

• TL-NMF automatically uncovers data-driven