¹ The University of Tokyo, Tokyo, Japan

1. SUMMARY

Independent low-rank matrix analysis (ILRMA) • A novel blind audio source separation method [Kitamura+ 2016]

- **Problem: block permutation problem** (misalignment) in the low- and high-frequency bands) especially in speech/speech separation
- Proposal: spatial-model-based regularization **method for ILRMA** with null beamformer and **new optimization algorithm** (vectorwise coordinate descent: VCD)
- **Result:** proposed approach can improve the separation accuracy and stability in speech separation.

ILRMA

Derivation of VCD

- Since $b_{i,n}$ is independent of $w_{i,n}$,

$\partial \log \det oldsymbol{W}_i ^2$	$_ rac{\partial \log oldsymbol{w}_{i,n}^{H}oldsymbol{b}_{i,n} }{}$		
$\partial oldsymbol{w}^*_{i,n}$	$- \partial oldsymbol{w}^*_{i,n}$		

quadratic equation w.r.t. $\beta_{i,n}$:

$$oldsymbol{b}_{i,n}^{\mathsf{H}}\widehat{oldsymbol{D}}_{i,n}^{-1}oldsymbol{b}_{i,n}|eta_{i,n}|^2+\lambda_n\widehat{oldsymbol{w}}_{i,n}^{\mathsf{H}}\widehat{oldsymbol{D}}_{i,n}^{-1}oldsymbol{b}_{i,n}$$

Finally, we obtain the followin
$$\begin{bmatrix} \boldsymbol{u}_{i,n} = \widehat{\boldsymbol{D}}_{i,n}^{-1} \boldsymbol{W}_i^{-1} \boldsymbol{e}_n, \\ \widehat{\boldsymbol{u}}_{i,n} = \lambda_n \widehat{\boldsymbol{D}}_{i,n}^{-1} \widehat{\boldsymbol{w}}_{i,n}, \\ r_{i,n} = \boldsymbol{u}_{i,n}^{\mathsf{H}} \widehat{\boldsymbol{D}}_{i,n} \boldsymbol{u}_{i,n}, \\ \widehat{r}_{i,n} = \boldsymbol{u}_{i,n}^{\mathsf{H}} \widehat{\boldsymbol{D}}_{i,n} \widehat{\boldsymbol{u}}_{i,n}, \\ \left(\frac{\boldsymbol{u}_{i,n}}{\sqrt{r_{i,n}}} + \widehat{\boldsymbol{u}}_{i,n} \right)$$

e
h/speech
$$\frac{1}{J} \sum_{j} \frac{x_{ij} x_{ij}^{\mathsf{H}}}{\sum_{l} t_{il,n} v_{lj,n}}$$

: integral index

of frequency

: integral index

of time

$$\begin{array}{c} T_1 V_1 \\ T_1 V_1 \\ T_2 V_2 \end{array}$$

Iters
$$w_{i,n}$$
:

Saruwatari Lab., The University of Tokyo / YAMAHA Corporation

) peech ource 2	Initial value of W	(1)Identity matrix (2)(3) NBF
	Initial value of T, V	Unit random number
	Spatial regularization	(1)(2) Off (3) On
``````````````````````````````````````	Number of NMF bases	1,2,3,5,10,15,20,25,30
	<b>Evaluation criteria</b>	Avg. improvement of signal-to-distortion ratio (SDRi) (20-time trial)
nt	Speech sources	Obtained from SiSEC UND datasets (4 pairs)
l		

Number of NMF bases						
3	5	10	15	20	25	30
23	6.26	5.60	5.45	5.14	4.97	5.06
.28	10.95	11.34	11.60	11.67	11.66	11.51
.95	12.04	12.36	12.55	12.40	12.34	12.25
.23	12.16	12.40	12.62	12.35	12.43	12.27
.40	12.07	12.22	12.40	12.23	12.20	12.04

<b><i>t</i>-MNMF</b>	ILRMA	Proposed
[K. Kitamura+ 2016]	[D. Kitamura+ 2016]	ILRMA
71.95	1.00	1.61