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Introduction and Motivation GAN-Marginal DFM (GAN-MDFM)
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o Table 1. Classification accuracy
Experimental Results Bascline Comvex PCA VAE GAN GAN-MDFM
. . . MNIST 0.987 0986 0987 0.988 0.991 0.987
* Regularisation of GAN-MDFM did not degenerate CIFARIO 0707 0.654 0700 0702 0.616  0.728
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Conclusions /\

* We have proposed a unknown class generator with
assistance of MDAE.

* Our generated data is well-desighed augmented data
for regularising classifier.
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