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Background
v Generative Adversarial Networks (GAN)1

v GAN-DFM2

Experimental Results
• Regularisation of GAN-MDFM did not degenerate  

accuracy at all but even improved on CIFAR10.
• Our model outperformed other methods in terms of 

Area Under the Curve (AUC).
• Generated data seemed similar to training data but 

not exactly as our purpose.

Conclusions
• We have proposed a unknown class generator with 

assistance of MDAE.
• Our generated data is well-designed augmented data 

for regularising classifier.
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GAN-Marginal DFM (GAN-MDFM)
v Problematic behavior of classifier

v Objective

Known class

Unknown class Classifier Membership
Probability

• Classifier based on deep 
learning has arrived at 
human-level.

• However, for unknown 
classes (not seen during 
training), the model has 
no way but predict them 
as one of known classes 
with high probability.

DiscriminatorData

x ⇠ pdata (x)

Generator

z ⇠ pz (z)

x̃ ⇠ pG (x|z)

Original Data

Corrupted Data

Corrupted Data

Reconstruction

§ Denoising autoencoder (DAE) 
models distribution of training data 
on feature space of discriminator

§ Generator is trained to match 
distribution of training data on  
feature space of discriminator (DFM)

§ To train classifier end-to-end, fake data is necessary.

Decision boundary on feature space of classifier
Known class (circle, square, triangle), Unknown class (cross)

§ If we could generate fake data located on feature space 
nearby space of known classes, classifier would be easily 
trained by minimising cross entropy and miximising
entropy of fake data. 

• Tightening decision boundary.

• Separating unknown classes from known classes on feature space.
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for generator
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Objective function
for classifier
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§ Classifier: minimise cross entropy with positive data (known classes)
maximise entropy with fake negative data (unknown classes)
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§ Generator: generate fake negative data that is located on m away feature 
space from the one known classes
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§ Marginal Denoising Autoencoder (MDAE):
model noisy feature distribution of known classesmin
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Regularisation


