CLUSTERING-GUIDED GP-UCB FOR BAYESIAN OPTIMIZATION

Jungtaek Kim and Seungjin Choi

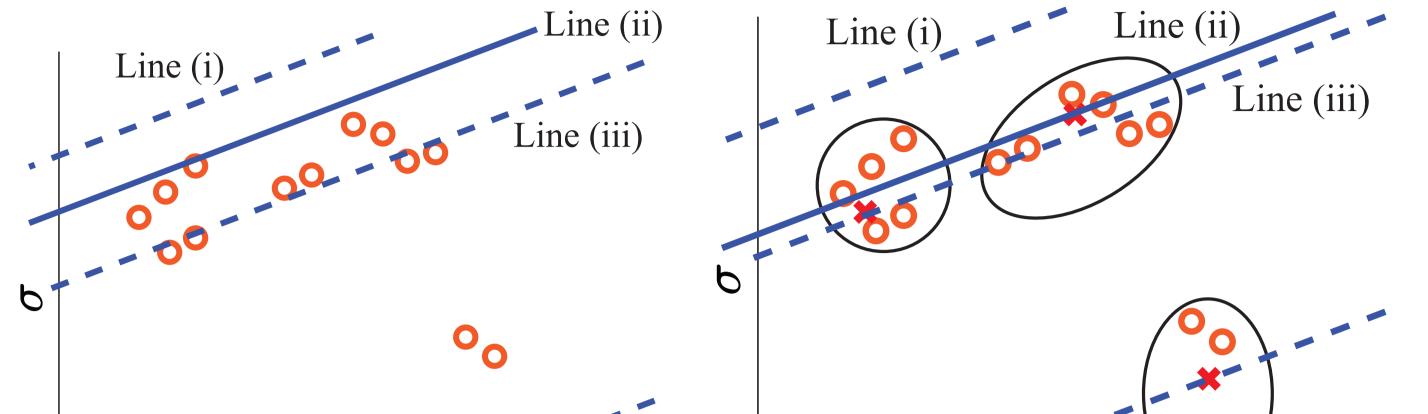
Department of Computer Science and Engineering, POSTECH

Introduction and Motivation

- Bayesian optimization is a powerful method for finding extrema of an objective function [1, 3].
- One of acquisition functions, GP-upper confidence bound (GP-UCB) determines where next to sample from the true function, balancing exploration and exploitation.
- We first present a geometric interpretation of GP-UCB.
- We develop GP-UCB to clustering-guided method, called

Clustering-Guided GP-UCB

Geometric view of GP-UCB



ICASSP-2018

as clustering-guided GP-UCB (CG-GPUCB).

Background

- Bayesian optimization [1]
- ✓ Global optimization for black-box function.

Algorithm 1 Bayesian Optimization with GP regression

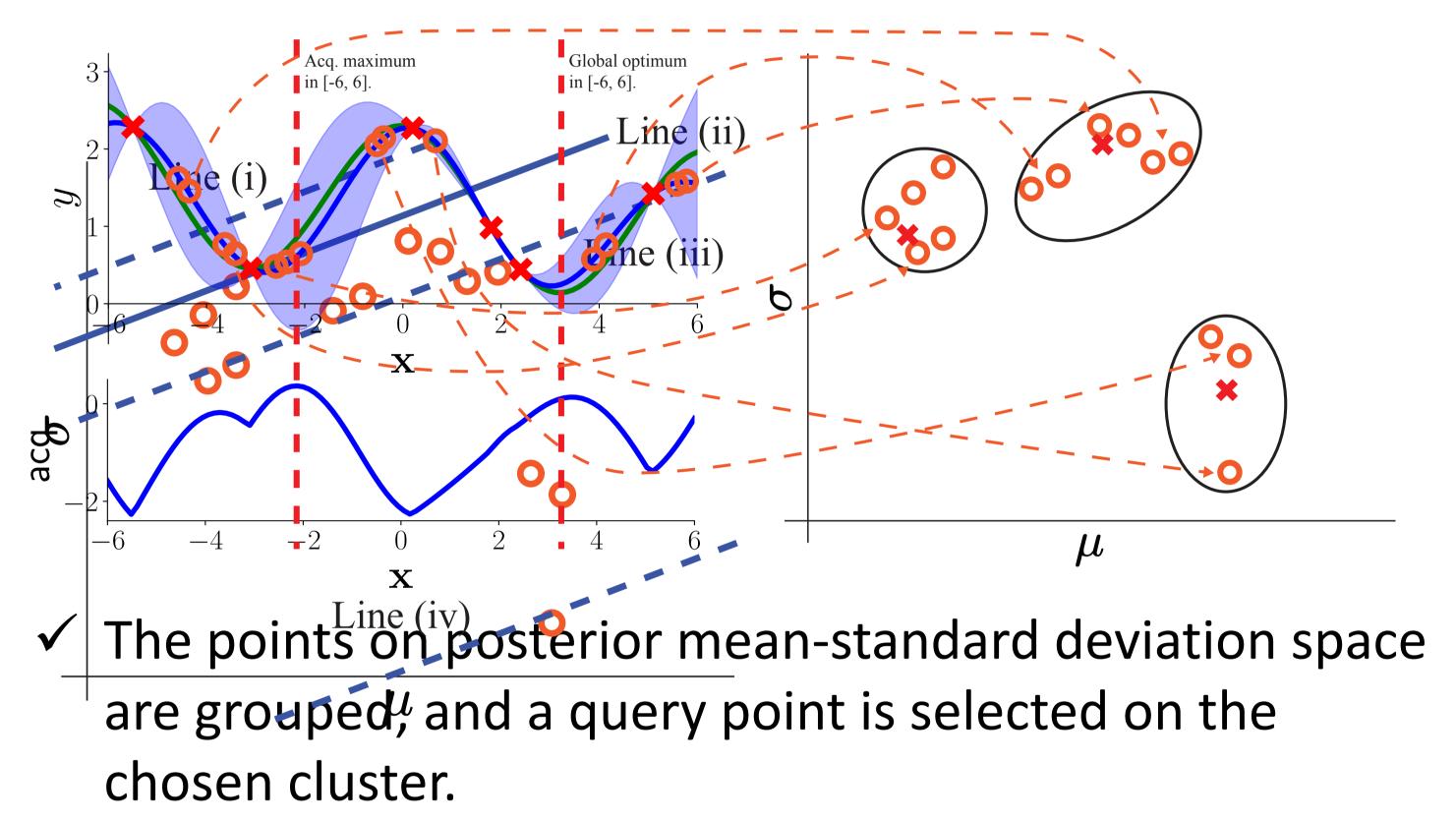
- **Require:** Initial data $\mathcal{D}_{1:I} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_I, y_I)\}$, and $T \in I$ $\mathbb{N} > 0$
- 1: for t = 1, 2, ..., T do
- Find \mathbf{x}_{I+t} that maximizes the acquisition function over the 2: current GP: $\mathbf{x}_{I+t} = \arg \max_{\mathbf{x}} a(\mathbf{x} | \mathcal{D}_{1:I+t-1}).$
- Sample the objective function: $y_{I+t} = f(\mathbf{x}_{I+t}) + \epsilon_{I+t}$. 3:
- Augment the data: $\mathcal{D}_{1:I+t} = \{\mathcal{D}_{1:I+t-1}, (\mathbf{x}_{I+t}, y_{I+t})\}.$ 4:
- Update the GP, computing $\mu_{I+t}(\mathbf{x}), \sigma_{I+t}^2(\mathbf{x})$: 5:

6: **end for**

7: return $\mathbf{x}^* = \operatorname{arg max}_{\mathbf{x} \in \{\mathbf{x}_1, \dots, \mathbf{x}_{I+T}\}} \mu_{I+T}(\mathbf{x})$

• GP-UCB [2]

- Line (iv) Line (iv) ---, μ $\sigma(\mathbf{x}) = -\frac{1}{\kappa} \left(\mu(\mathbf{x}) + a(\mathbf{x}|\mathcal{D}_{1:t}) \right)$
- Proposed method: Clustering-guided GP-UCB



- Linear combination of posterior mean and standard deviation function.
- ✓ Trade-off hyperparameter controls tightness of confidence bound.

 $a(\mathbf{x}|\mathcal{D}_{1:t}) = -\mu(\mathbf{x}) + \kappa\sigma(\mathbf{x})$

Selected References

- [1] E. Brochu, V. M. Cora, and N. de Freitas, "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning," 2010, arXiv preprint arXiv:1012.2599.
- [2] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, "Gaussian process optimization in the bandit setting: No regret and experimental design," in Proceedings of the International Conference on Machine Learning (ICML), Haifa, Israel, 2010, pp. 1015–1022.
- [3] J. Snoek, H. Larochelle, and R. P. Adams, "Practical Bayesian optimization of machine learning algorithms," in Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 2012, vol. 25, pp. 2951–2959.

✓ We select a query point using one of two criteria, CG-GPUCB-NN and CG-GPUCB².

$$\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathcal{C}_{i^*}} \|[\mu(\mathbf{x}),\sigma(\mathbf{x})]^{\top} - \mathbf{c}_{i^*}\|_2^2$$
$$\mathbf{x}_{t+1} = \arg\max_{\mathbf{x}\in\mathcal{C}_{i^*}} a(\mathbf{x}|\mathcal{D}_{1:t})$$

Algorithm 2 Bayesian Optimization with CG-GPUCB

Require: Initial data $\mathcal{D}_{1:I} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_I, y_I)\}, T \in \mathbb{N} >$ 0, and $K \in \mathbb{N} > 0$ (number of clusters)

- 1: for t = 1, 2, ..., T do
- Calculate centers \mathbf{c}_i of K clusters determined in the μ - σ 2: space, given the current GP.
- Find the best cluster C_{i^*} via (9). 3:
- Find x_{I+t} by (10) or (11). 4:
- Sample the objective function: $y_{I+t} = f(\mathbf{x}_{I+t}) + \epsilon_{I+t}$. 5:
- Augment the data: $\mathcal{D}_{1:I+t} = \{\mathcal{D}_{1:I+t-1}, (\mathbf{x}_{I+t}, y_{I+t})\}.$ 6:

Synthetic function

LR

EI MCMC

Update the GP via (4) & (5). 7:

CG-GPUCB²-10.0

-CG-GPUCB²-5.0 -CG-GPUCB²-2.0

8: end for

-80

CG-GPUCB-NN-2.0

ion Value

Experimental Results

- Our method was conducted on synthetic function, benchmarks, and hyperparameter optimization (HPO).
- We showed the effect of hyperparameters for CG-GPUCB-NN and CG-GPUCB².
- HPO for logistic regression (LR) and deep convolutional networks (DCN) was tested.

Conclusion

- We presented our own geometric interpretation of GP-UCB and new acquisition function, CG-GPUCB.
- Our method outperformed in non-smooth function with sharp peaks and valleys.

