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Introduction	and	Motivation
• Bayesian	optimization	is	a	powerful	method	for	finding	
extrema	of	an	objective	function	[1,	3].

• One	of	acquisition	functions,	GP-upper	confidence	bound	
(GP-UCB)	determines	where	next	to	sample	from	the	
true	function,	balancing	exploration	and	exploitation.

• We	first	present	a	geometric	interpretation	of	GP-UCB.
• We	develop	GP-UCB	to	clustering-guided	method,	called	
as	clustering-guided	GP-UCB	(CG-GPUCB).
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Background
• Bayesian	optimization	[1]
ü Global	optimization	for	black-box	function.

• GP-UCB	[2]
ü Linear	combination	of	posterior	mean	and	standard	

deviation	function.
ü Trade-off	hyperparameter controls	tightness	of	

confidence	bound.

Experimental	Results
• Our	method	was	conducted	on	synthetic	function,	
benchmarks,	and	hyperparameter optimization	(HPO).

• We	showed	the	effect	of	hyperparameters for	CG-
GPUCB-NN	and	CG-GPUCB2.

• HPO	for	logistic	regression	(LR)	and	deep	
convolutional	networks	(DCN)	was	tested.

Conclusion
• We	presented	our	own	geometric	interpretation	of	
GP-UCB	and	new	acquisition	function,	CG-GPUCB.

• Our	method	outperformed	in	non-smooth	function	
with	sharp	peaks	and	valleys.
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Clustering-Guided	GP-UCB
• Geometric	view	of	GP-UCB

• Proposed	method:	Clustering-guided	GP-UCB

ü The	points	on	posterior	mean-standard	deviation	space	
are	grouped,	and	a	query	point	is	selected	on	the	
chosen	cluster.

ü We	select	a	query	point	using	one	of	two	criteria,	CG-
GPUCB-NN	and	CG-GPUCB2.
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�100 if 35.0 < x < 35.5

�200 if 45.0 < x < 45.5

50 sin(

8⇡x
50 ) sin(

3x
100 ) otherwise.

LR

DCN

Line (i)
Line (ii)

Line (iii)

Line (iv)

Line (i) Line (ii)

Line (iii)

Line (iv)

where  is a hyperparameter that controls the tightness of the con-
fidence bounds [2]. Bayesian optimization is summarized in Algo-
rithm 1.

Algorithm 1 Bayesian Optimization with GP regression
Require: Initial data D1:I = {(x1, y1), . . . , (xI

, y
I

)}, and T 2
N > 0

1: for t = 1, 2, . . . , T do
2: Find x

I+t

that maximizes the acquisition function over the
current GP: x

I+t

= argmax

x

a(x|D1:I+t�1).
3: Sample the objective function: y

I+t

= f(x
I+t

) + ✏
I+t

.
4: Augment the data: D1:I+t

= {D1:I+t�1, (xI+t

, y
I+t

)}.
5: Update the GP, computing µ

I+t

(x),�2
I+t

(x):
6: end for
7: return x

⇤
= argmax

x2{x1,...,xI+T } µI+T

(x)

Bayesian optimization has been used in various problems, in-
cluding hyperparameter optimization [3, 4], networks architecture
optimization [5], molecule-surface interaction optimization [6], and
biological structure recombination optimization [7]. As shown in
Algorithm 1, Bayesian optimization is constituted by two ingredi-
ents: (i) estimating a surrogate function via GP regression; (ii) de-
termining where next to sample from the objective function via the
maximization of an acquisition function (e.g., GP-UCB in this pa-
per). Hyperparameters appearing in GP regression as well as in the
acquisition function should be carefully tuned, which is done by an
auxiliary optimization [8]. However, auxiliary optimization requires
expensive computation, which is often problematic while its conver-
gence is proved [2, 9, 10]. Methods that bypass the auxiliary opti-
mization are also available [11–13].

In this paper we present a simple practical method which im-
proves GP-UCB, especially in cases where the objective function is
not smooth with sharp peaks and valleys. Our method allows for the
model to better explore regions far from the current location in deter-
mining where next to sample from the objective function. Detailed
description of the method is given in the next section.

2. CLUSTERING-GUIDED GP-UCB

In this section we present our main contribution, the clustering-
guided GP-UCB method, in detail. We begin with a novel geometric
view of GP-UCB on which we base our clustering-guided GP-UCB.

2.1. Geometric View of GP-UCB

GP-UCB [2] uses the following acquisition function constructed by
the current GP inferred on D1:t

a(x|D1:t) = �µ(x) + �(x), (8)

where µ is the posterior mean, � is the posterior standard deviation,
and  is the trade-off hyperparameter with its value being increased
gradually as iterations proceed. It determines the next query point
by

x

t+1 = argmax

x

a(x|D1:t),

which is expected to have small mean and large variance. We write
the acquisition function as a mapping from µ(x) to �(x):

�(x) =
1



⇣
µ(x) + a(x|D1:t)

⌘
,

where a(x|D1:t)/ is interpreted as a �-axis intercept in the µ-�
space. Fig. 1 illustrates that the maximum of the acquisition function
corresponds to a �-axis intercept whose value is the largest.
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Fig. 1. The horizontal axis is the posterior mean µ and the verti-
cal axis is the posterior standard deviation �. Small circles (with
orange color) represent points associated with two-dimensional vec-
tors whose entries are sampled from µ(x) and �(x). Lines (i)-(iv),
described by (9), are cases with different y-axis intercepts. The point
that meets the line (ii) gives the maximal acquisition value.

2.2. Query Point Selection

A query point is determined by searching where the acquisition func-
tion is maximized. As shown in Fig. 1, nearby points in the µ-�
space exhibit similar characteristics in the perspective of posterior
mean and variance. This suggests to group these points into a few
coherent clusters, in order to reduce the search space over which the
GP-UCB acquisition function is maximized. In GP-UCB, the search
space consists of whole possible candidates to be considered. In
contrast, our clustering-guided GP-UCB (CG-GPUCB) reduces the
search space to a set of candidates in a single cluster. Only centers
of clusters are considered to determine which cluster is the best in
terms of the values of �-axis intercepts.

Denote by c

i

2 R2 the center of cluster i in the µ-� space, for
i = 1, . . . ,K, where K is the number of clusters pre-specified. The
best cluster is determined by

i⇤ = argmax

i=1,...,K
[�c

i,1 + c
i,2] , (9)

where c
i,j

represents entry j in c

i

, for j = 1, 2. Denote by C
i

cluster i, then the best cluster corresponds to C
i

⇤ . Depending on
how the final query point is selected in the best cluster, we present
two methods:

• CG-GPUCB-NN where the next query point is chosen as the
nearest point to the center of the best cluster;

• CG-GPUCB2 where we consider acquisition values at only
points in the best cluster to finally determine the next query
point.

That is, in CG-GPUCB-NN, the next query point is calculated as

x

t+1 = argmin

x2Ci⇤

���[µ(x),�(x)]> � c

i

⇤

���
2

2
, (10)

where k · k2 is the Euclidean norm. In CG-GPUCB2, the next query
point is calculated as

x

t+1 = argmax

x2Ci⇤
a(x|D1:t), (11)

a(x|D1:t) = �µ(x) + �(x)

�(x) = � 1


(µ(x) + a(x|D1:t))

xt+1 = arg min
x2Ci⇤

k[µ(x),�(x)]> � ci⇤k22

xt+1 = arg max

x2Ci⇤
a(x|D1:t)

Algorithm 2 Bayesian Optimization with CG-GPUCB
Require: Initial data D1:I = {(x1, y1), . . . , (xI

, y
I

)}, T 2 N >
0, and K 2 N > 0 (number of clusters)

1: for t = 1, 2, . . . , T do
2: Calculate centers c

i

of K clusters determined in the µ-�
space, given the current GP.

3: Find the best cluster C
i

⇤ via (9).
4: Find x

I+t

by (10) or (11).
5: Sample the objective function: y

I+t

= f(x
I+t

) + ✏
I+t

.
6: Augment the data: D1:I+t

= {D1:I+t�1, (xI+t

, y
I+t

)}.
7: Update the GP via (4) & (5).
8: end for
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