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~Aostact Experimental Setup 55 Hour Multi-Layered HORNNP Experiments

» Many ways of using h;_, in calculating h; (e.g. pooling, gating

» Vanishing long-term gradients is a major issue in RNN training. etc.). We focus on using h;_,, as input to a HORNN layer. - ]ItEXFier.irT.lentS ljjsed5565hh0urtan’? 215dhOLf|r7|\t/)|GB3 challenge data System #layers #Params tg cn
» LSTM solves vanishing gradients with memory cells, but 4x as Or training and a .6 hourtest set, devi 7. 1L 1.1M 32.7 32.0
0 9 ~ Standard HORNN model structures are » 63k word dictionary + trigram LM (tg) and confusion network LSTMP oL 19M 31.330.6
many parameters as an RNN.
| | | - ReLU: h; = f(Wx; + Ush;_y + Uph;_, + b) decoding (cn). 1L 0°M 325318
’ \e/\>/<?r§ r:Opr?nseeC’;?oﬁzefrglr?]hnc])l:ﬁierle(M?er\l;%vderrEeNgz (L—I ORNN) with - Sigmoid: hy = f(Wx; + Uih;_1 + Uphy_n + i + b) ~ All models used cross-entropy training with extended HTK 3.5. el U HORNNP 1L 0.4M 32.0 31.4
PIEP PS. -~ Sigmoid HORNN requires to add extra h;_n, since it suffers _ _ © 1L 1.0M 31.4 30.7
» ASR experiments on English multi-genre broadcast (MGB3) data more from vanishing gradients. 55 Hour Single Layer HORNN Experiments ol 09M 31.4 307
showed sigmoid and ReLU HORNNSs reduced WERSs by 6.3% Affine [ Activation —> Ny =P Dy N 1 0°oM 33.0 321
and 4.2% over RNNs. - transform function ——h, D Addition | | ' — LsT™ tgl ~|[== ReLU ResRNN tlg sigmoid HORNNP 1L 0.4M 32.8 31.9
» HORNNSs gave similar WERSs to projected LSTMs (LSTMP) by >4 | II;\S-II:I:JA ;\:m : BN RelU I_’:jesRRNENcl\rlwt 1L 1.0M 31.6 30.9
using 20%—50% of the RNN parameters and computation. 35| < J >IgMOIERES 91 2L 0.9M 31.4 30.7
3 — ;Ziﬂ’o?ngNcl\I” o = Smpp e Table 1: LSTMP & HORNNP %WERs with different depths, h; and Ph,_; sizes.
Markov Conditional Independence % 53| g sigmoid RNN cn| oo e » For 1L/2L HORNNSs to LSTMPs,
= 3 >3 ~ 338 7 ~ projection P reduced h; size by 2 or by 4;
~ A standard RNN layer is defined as 7 33,433 - HORNNPs used far fewer RNN layer parameters (#params)
h, = f(Wx; + Uh,_ + b), % 320 | o 331 330 531 33.1 without increasing WER;
where = 32.7 » fewer parameters improve speed and save space.
» h; and x; are the output and input vectors at time f; m 32.2 » By going wider or deeper with similar #params, HORNNSs
» W and U are weight matrices, b is bias vector; 32} outperformed LSTMPs by ~4% relative WER reduction.
~ f(-) Is the activation function.
» RNNs have the 1st-order Markov conditional independence . 275 Hour Validation Experiments
property (detailed proof given in paper). YT 3
» h; is continuous-valued hidden state; Figure 1: The HORNN structure unfolded through time steps (). = = = System #lLayers tg cn #lLayers tg cn
’ 36 . . , .
- h; depends on only h;_; and x;; | | | | _ ReLU HORNN g LSTMP 1L 26526.0 2L 25.725.2
. Property also applies to bidirectional RNNs by viewing > Like LSTMP, U matrices can be factorised with a shared linear S ReLU HORNN cr ReLUHORNNP 1L  26.4259 2L 253250
» RNN language models (LM) have std. 1st-order Markov property. ~ ReLU: ht = /(WX + Up1Ph;_1 + Up,Ph;_, + b) — Sigg‘r‘:gi:ﬂg‘mﬂg Table 2: LSTMP & HORNNP %WERs with h, size 1000 and Ph; 4 size 500.
: P ad p-
- Sigmoid: hy = #(Wx; + UptPhi—1 + UpPhi—n + h_m + b) = B p-sigmoid HORNN cn » ~3% relative WER reduction by going from 1L to 2L recurrent
HORNNSs for Sigmoid and ReLU Functions Z 34f : layers for both LSTMP and HORNNP.
Computation and Storage Complexities o . _ .
» Vanishing graidents can be solved by relaxing the 1st-order L - 33.3 a1 33.3 > fl_els)veRrN#NZfailg produced similar WERs to LSTMPs by using far
Markov conditional independence constraint. » Comparing to LSTM/LSTMP with the same h; and Ph;_; sizes, 233 . . 32.8 . 632-9 32.9 . P '
° S | | ' = . ' { : : :
» Use n-order Markov property by including h;_, in h; calculation. HORIT'_N{I_HI\SIDIRNNP oftez gses less than 50% #parﬁms. 2NN 7 >0 . 45 5 32.3| B2.3 2 7L sigmoid DNN produced WERs of 28.4 (tg) and 27.5 (cn)
- To directly access to long-term information in testing. . f‘” ol alyer usesh times morelioarameterst an an 32l | Bre B L o Bl b 32.0 |
» To create shortcuts to allow additional long-term information to ayer to implement the memory cells. | |
flow more easily in training » A HORNN layer has lower cost than 2 RNN layers.
| - It saves more than 50% #calculations & storage space in both » Proposed to use high order (Markov) connections to address the
» The gradients of an objective function / w.r.t. h;_1 is training and testing. T B NI T I T o o RNN long-term vanishing gradient issue.
OF . OF ohy_ g - Ns (ResBNN | | baseli N ) -~ S Ec Ec Ec £c EC EC » Proposed two HORNNSs structures for sigmoid and RelLU.
oh, 4 Z oh, ;¢ 0O hti1 Residual RNNs (Res ) were also evaluated as baselines. Figure 2: %WERs for systems with h; size 500, » HORNNSs yielded 4%—6% WER reductions over std. RNNSs.
. =t - _ . L - e = HUa2f (WX + Ugihe 1 4 b) + he-m) ~ HORNNSs (0.5M) gave similar WERs to LSTMs (1.2M). » Comparing to LSTMs/LSTMPs, HORNNs/HORNNPs
that .aI_IeV|ates Iong-term information vanishing by integrating it » ResRNN is slower than HORNN since matrices cannot be . Singid HORNNSs had lower WERs than ResRNNs (0.5M). . gave similar WERs, and used far less computation & space:
explicitly at each time step. multiplied in parallel. » Use n =4 for ReLU and m = 1, n = 2 for sigmoid HORNNSs. - had 4% relative WER reduction with similar #params.
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