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Abstract

I Vanishing long-term gradients is a major issue in RNN training.

I LSTM solves vanishing gradients with memory cells, but 4× as
many parameters as an RNN.

I We propose to use high order (Markovian) RNNs (HORNN) with
extra connections from multiple previous time steps.

I ASR experiments on English multi-genre broadcast (MGB3) data
showed sigmoid and ReLU HORNNs reduced WERs by 6.3%
and 4.2% over RNNs.

I HORNNs gave similar WERs to projected LSTMs (LSTMP) by
using 20%–50% of the RNN parameters and computation.

Markov Conditional Independence

I A standard RNN layer is defined as
ht = f (Wxt + Uht−1 + b),

where
I ht and xt are the output and input vectors at time t ;
I W and U are weight matrices, b is bias vector;
I f (·) is the activation function.

I RNNs have the 1st-order Markov conditional independence
property (detailed proof given in paper).
I ht is continuous-valued hidden state;
I ht depends on only ht−1 and xt;
I Property also applies to bidirectional RNNs by viewing

hbid
t = {hfwd

t ,hbwd
t }.

I RNN language models (LM) have std. 1st-order Markov property.

HORNNs for Sigmoid and ReLU Functions

I Vanishing graidents can be solved by relaxing the 1st-order
Markov conditional independence constraint.

I Use n-order Markov property by including ht−n in ht calculation.
I To directly access to long-term information in testing.
I To create shortcuts to allow additional long-term information to

flow more easily in training.

I The gradients of an objective function F w.r.t. ht−1 is

∂F
∂ ht−1

=
n∑

i=1

∂F
∂ ht−i−1

∂ ht−i−1

∂ ht−1

that alleviates long-term information vanishing by integrating it
explicitly at each time step.

I Many ways of using ht−n in calculating ht (e.g. pooling, gating
etc.). We focus on using ht−n as input to a HORNN layer.

I Standard HORNN model structures are
I ReLU: ht = f (Wxt + U1ht−1 + Unht−n + b)
I Sigmoid: ht = f (Wxt + U1ht−1 + Unht−n + ht−m + b)
I Sigmoid HORNN requires to add extra ht−m since it suffers

more from vanishing gradients.
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Figure 1: The HORNN structure unfolded through time steps (t).

I Like LSTMP, U matrices can be factorised with a shared linear
projection P that results in projected HORNN (HORNNP).
I ReLU: ht = f (Wxt + Up1Pht−1 + UpnPht−n + b)
I Sigmoid: ht = f (Wxt + Up1Pht−1 + UpnPht−n + ht−m + b)

Computation and Storage Complexities

I Comparing to LSTM/LSTMP with the same ht and Pht−1 sizes,
HORNN/HORNNP often uses less than 50% #params.
I An LSTM layer uses 4 times more parameters than an RNN

layer to implement the memory cells.
I A HORNN layer has lower cost than 2 RNN layers.
I It saves more than 50% #calculations & storage space in both

training and testing.

I Residual RNNs (ResRNN) were also evaluated as baselines.
I ht = f (Ud2f (Wxt + Ud1ht−1 + b) + ht−m)

I ResRNN is slower than HORNN since matrices cannot be
multiplied in parallel.

Experimental Setup

I Experiments used 55 hour and 275 hour MGB3 challenge data
for training and a 5.6 hour test set, dev17b.

I 63k word dictionary + trigram LM (tg) and confusion network
decoding (cn).

I All models used cross-entropy training with extended HTK 3.5.

55 Hour Single Layer HORNN Experiments

Figure 2: %WERs for systems with ht size 500.

I HORNNs (0.5M) gave similar WERs to LSTMs (1.2M).
I Sigmoid HORNNs had lower WERs than ResRNNs (0.5M).
I Use n = 4 for ReLU and m = 1,n = 2 for sigmoid HORNNs.

55 Hour Multi-Layered HORNNP Experiments

System #Layers #Params tg cn

LSTMP 1L 1.1M 32.7 32.0
2L 1.9M 31.3 30.6

ReLU HORNNP

1L 0.2M 32.5 31.8
1L 0.4M 32.0 31.4
1L 1.0M 31.4 30.7
2L 0.9M 31.4 30.7

sigmoid HORNNP

1L 0.2M 33.0 32.1
1L 0.4M 32.8 31.9
1L 1.0M 31.6 30.9
2L 0.9M 31.4 30.7

Table 1: LSTMP & HORNNP %WERs with different depths, ht and Pht−1 sizes.

I For 1L/2L HORNNs to LSTMPs,
I projection P reduced ht size by 2 or by 4;
I HORNNPs used far fewer RNN layer parameters (#params)

without increasing WER;
I fewer parameters improve speed and save space.

I By going wider or deeper with similar #params, HORNNs
outperformed LSTMPs by ∼4% relative WER reduction.

275 Hour Validation Experiments

System #Layers tg cn #Layers tg cn
LSTMP 1L 26.5 26.0 2L 25.7 25.2
ReLU HORNNP 1L 26.4 25.9 2L 25.3 25.0
sigmoid HORNNP 1L 26.4 25.8 2L 25.6 25.2

Table 2: LSTMP & HORNNP %WERs with ht size 1000 and Pht−1 size 500.

I ∼3% relative WER reduction by going from 1L to 2L recurrent
layers for both LSTMP and HORNNP.

I HORNNPs still produced similar WERs to LSTMPs by using far
fewer #params.

I 7L sigmoid DNN produced WERs of 28.4 (tg) and 27.5 (cn).

Conclusions

I Proposed to use high order (Markov) connections to address the
RNN long-term vanishing gradient issue.

I Proposed two HORNNs structures for sigmoid and ReLU.
I HORNNs yielded 4%–6% WER reductions over std. RNNs.
I Comparing to LSTMs/LSTMPs, HORNNs/HORNNPs

I gave similar WERs, and used far less computation & space;
I had 4% relative WER reduction with similar #params.
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