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Abstract — Multifractal analysis has become a reference tool to char-
acterize scale-free temporal dynamics in time series. It proved successful
iIn numerous applications very diverse in nature. However, such successes
remained restricted to univariate analysis, while many recent applications
call for the joint analysis of several components. Surprisingly, multivariate
multifractal analysis remained mostly overlooked. The present contribu-
tion aims at defining a wavelet-leader-based framework for multivariate
multifractal analysis and at studying its properties and estimation per-
formance. To better understand what properties of multivariate data are
actually captured, a multivariate multifractal model is used as representa-
tive paradigm and permits to show that multivariate multifractal analysis
puts in evidence transient and local dependencies that are not well quan-
tified or even evidenced by the classical Pearson correlation coefficient.

Multifractal analysis

Multifractal Spectrum

— LOCAL REGULARITY:

— Get regularity exponent from function X ()
— Compare X with local polynomial approximation P
— Most common: Holder exponent A(t) > 0

+
X(t+a) — Pla)| “R" o)
— MULTIFRACTAL SPECTRUM:

— Bivariate signal: X = (X7, Xo)
— Holder exponents: (h{(t), ho(t))
— Multifractal spectrum:

D(hy, ho) = dimpausdorfr {t @ h1(t) = hy and ho(t) = ho}

— “Quantity” of points with given regularity

‘

4‘ D(hl, hg)

— Problem: Can not be computed in practice
—— Use multifractal formalism to estimate

Multiresolution quantities
~X(t) — Tx (4, k) (scale 277, position k = t27)

— Choice 1: Discrete wavelet transform

— Poor performance

— Dyadic intervals:

A=Xip=027(k—-1),277k and 3X\jp=Uj__1 e

_j/\

— Choice 2: Wavelet leaders (Wendt, Abry & Jaffard, 2007)

Tx(j, k) = €x(j, k) = sup [ey]

Ne3A

—— Much better performance

Multifractal Formalism: Definition

— Goal: provide estimate of D(hy, hy) from wavelet leaders

— Easily computable in practice. Steps:

1. Structure functions 5"

.
NS . .
S(q1,92,5) = ;Z Ly, (7, k)" Lx, (5, k)*
J k=1

2. Scaling function (:
S(q1, g, 5) ~ 2798 ®) 5 — 0o

3. Legendre spectrum L:

L(hy, hy) = qilﬂ(;fz (1 + q1h1 + g2ho — Clq1,92)) > D(q1, ¢).

— Upper bound L used as estimate for D

Multifractal Formalism: Cumulants

— Bivariate cumulants of (In Lx, (j, k),In Lx,(j, k))

o Cpmz(j) — E[lﬂ (LXl(]a °))p1 In (LXQ(]7 '))pﬂ
—Order p1 +p2 > 1

— Scale dependence:

. 0 '
Cpypo(d) = Cpypy T Cpipe I 27

— Polynomial expansion:

9 9
cp2b ((h1 — c1g co0b (ho — o
~ 1
L(hl, h2> -+ 5 ( 5 > —+ 5 ( 5 )
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— Information synthesized in second order: 5 parameters

2
where b = copcgo — ¢71 = 0

— Interpretation:

— (1, c10: average regularity on each component
— (92, cop: width of regularity fluctuations on each component
—c11: leading-order joint regularity fluctuation

Estimation performance: bivariate
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— Excellent estimation performance
— Estimation performance largely independent of pss and py, ¢

— Relevant and robust estimates for bivariate parameters c11 and py, f

Practical Estimation

— (g1, g2) — linear regressions logy S(qy, g2, 7) vs logy 2/

— Cp,p, — linear regressions C'p 1, (j) vs In2/

Synthetic Process

Bivariate Multifractal Random Walk

Synthetic process with bivariate multifractal behavior
— DEFINITION

— Use two pairs of stochastic processes
— Pair 1: bivariate fractional Gaussian noise GG1(t), Go(t)

x Self-similarity parameters: H{, Ho
x Covariance matrix:

— Pair 2: Gaussian processes wi(t), wo(t)

x Multifractality parameters: A\, A9
+ Covariance function: ., r such that

o N .
(S b (k1) = P i AN, log ( ) Py

k=1l +1

where

—— Logarithmic covariance to induce multifractality
— G,;(t),w;(t) synthesized following (Helgason, Pipiras & Abry, 2011)
— Final process:

— PROPERTIES

— Correlation coefficient of final process:

PoMRW = Pss [ (Pm > A1, A2)

— Can have pypprpw =0 with py,r7#0 |

— Cumulants:
*clO:HlJr)\%/Z and 001:H2+)\%/2
* Co() = —)\% and cpo = —)\%

¥ C11 = —PmfAIA2

Higher-order dependence

-Set pss =0 = ppyrrw =0
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— Measured Pearson correlation indeed null (left)

— Estimated p,,,r #0 =  dependence beyond correlation

Results

Estimation performance: univariate
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— Performance independent of correlation

— Performance independent of multifractal dependence

Multifractal spectra
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pss =0 pmp =10 0.4 .

pPss =0 pmp =105

pss — 0 pmf — _0.9

— Orientation and eccentricity of support: higher-order dependence
—pSS:O,pmf:O —
~pss = U, ppp >0 =

. uncorrelated, independent
. uncorrelated, positive dependence

—pss =0, pppp <0 == uncorrelated, negative dependence
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