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Overview
• We use an LSTM-based speaker verification model [1] for speaker diarization.
• Model is trained on anonymized voice searches, and evaluated on out-of-

domain data (CALLHOME & NIST RT-03 etc.).
• With a modified version of spectral clustering, we achieve state-of-the-art 

Diarization Error Rate (DER).
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Fig. Speaker diarization solves the 

problem of “who spoke when”. 
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Fig. Example application: Improve ASR with 
diarization results.

D-Vector Embedding: TE2E to GE2E
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Experiment Results

Fig. We use multi-layer LSTM network as audio 
feature extractor. 
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Fig. Tuple E2E loss: Speaker verification as a binary 
classification problem. 

• Tuple E2E [2]: Simulate enroll-verify runtime logic during training. However, 
tuples are randomly selected, and most tuples are easy – inefficient.

• Generalized E2E loss [1]: For each speaker, focus on its most offensive 
imposter in the batch.

Fig. Generalized E2E: For embedding !"#, we 
want it to be close to true speaker’s center $", and 
distant from the closest false speaker’s center $%.

Fig. For each training batch, we build a matrix for 
utterance-to-speaker similarities, which greatly 

accelerates the loss computation. 

• Window: Overlapping, fixed-length
(240ms), LSTM runs on it.

• Segment: Non-overlapping, longer 
(≤ 400ms), we average window-wise 
d-vectors on it.

• Then we cluster segment-wise d-
vectors to generate final diarization
results.
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Links online [3]

K-Means offline Spectral offline (Winner!)

Thresholding the 
cosine
similarities to 
centroids.

Fig. We experimented with four clustering algorithms. Two of them are online (Naïve and Links),
and the other two are offline (K-Means and Spectral).

Anisotropic, 
probabilistic, and 
generative cluster 
modeling.

• K-Means++ for cluster initialization.
• Find * using Mean Squared Cosine 

Distances (MSCD):
+* = argmax

%23
MSCD′(*)

• Eigen-decompose affinity matrix.
• Run K-Means on dimensionality-

reduced embeddings.
• Find * using the max eigen-gap 

criterion.

Fig. We apply a sequence of refinement operations on the affinity matrix.

Affinity matrix refinement: The key to the success of spectral clustering.
• Gaussian blur: Smooth the data, and reduce the effect of outliers.
• Row-wise thresholding: Zero-out affinities between different speakers.
• Symmetrization: Restore matrix symmetry.
• Diffusion: Sharpen affinity section boundaries of distinct speakers.
• Row-wise max normalization: Avoid undesirable scale effects.

Training Set
• Anonymized voice searches
• 36M utterances from 18K 

speakers

Dev Set
• Separated 

from Eval Set

Eval Set
• Standard public 

datasets: NIST RT-03, 
NIST SRE 2000, etc.

Train LSTM network Tune VAD, window size/step, 
refinement parameters, etc. Report DER

Fig. Our network is completely trained on out-of-domain data: voice search vs. telephone speech. 

Embedding Clustering
CALLHOME American English Eval NIST RT-03 English CTS Eval

Confusion FA Miss Confusion FA Miss

i-vector

Naive 26.41

2.40 3.55

35.35

4.66 2.62Links 25.40 33.56
K-Means 22.86 24.38
Spectral 14.59 13.84

d-vector

Naive 12.41

1.94 4.51

18.76

4.09 4.45Links 11.02 18.56
K-Means 7.29 7.80
Spectral 6.03 3.76

Table. DER (%) on English-only datasets for different embeddings and clustering algorithms.
Method Confusion FA Miss

Our model 12.0 2.2 4.6
Castaldo [4] 13.7 − −

Shum [5] 14.5 − −
Senoussaoui [6] 12.1 − −

Sell [7] (+VB) 13.7 (11.5) − −
Romero [8] (+VB) 12.8 (9.9) − −

Method Confusion FA Miss
Our model 5.97 2.51 4.06
Zajíc [9] 7.84 − −

Table (Left). DER (%) on NIST SRE 2000 CALLHOME. 
VB for Variational Bayesian resegmentation.

Table (Up). DER (%) on CALLHOME American English 
2-speaker subset (CH-109).
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