SPEAKER DIARIZATION WITH LSTM

Overview

- We use an LSTM-based speaker verification model [1] for speaker diarization. Model is trained on anonymized voice searches, and evaluated on **out-of-**
- domain data (CALLHOME & NIST RT-03 etc.).
- With a modified version of spectral clustering, we achieve state-of-the-art Diarization Error Rate (DER).

Fig. Generalized E2E: For embedding e_{ii} , we want it to be close to true speaker's center c_i , and distant from the **closest false speaker**'s center c_k . Fig. For each training batch, we build a matrix for utterance-to-speaker similarities, which greatly accelerates the loss computation.

2018

The 43rd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 15 - 20, 2018, Calgary, Alberta, Canada

Quan Wang, Carlton Downey, Li Wan, Philip A. Mansfield, Ignacio Lopez Moreno Google Inc., Carnegie Mellon University {quanw,liwan,memes,elnota}@google.com

Sliding Window Inference

- **Window**: Overlapping, fixed-length (240ms), LSTM runs on it.
- Segment: Non-overlapping, longer $(\leq 400$ ms), we average window-wise window size d-vectors on it.

Clustering Algorithms

Find k using Mean Squared Cosine Distances (MSCD):

 $k = \arg \max_{k>1} \text{MSCD}'(k)$

Spectral offline (Winner!)

- Eigen-decompose affinity matrix. Run K-Means on dimensionalityreduced embeddings.
- Find k using the max eigen-gap criterion.

Fig. We experimented with four clustering algorithms. Two of them are online (Naïve and Links), and the other two are offline (K-Means and Spectral).

- Affinity matrix refinement: The key to the success of spectral clustering.
- Gaussian blur: Smooth the data, and reduce the effect of outliers.
- Row-wise thresholding: Zero-out affinities between different speakers.
- Symmetrization: Restore matrix symmetry.
- Diffusion: Sharpen affinity section boundaries of distinct speakers.
- Row-wise max normalization: Avoid undesirable scale effects.

Links online [3]

Anisotropic, probabilistic, and generative cluster modeling.

Training Set

- Anonymized voice searches
- 36M utterances from 18K speakers

Train LSTM network

Embedding	Clustering	CALLHOME Americ	NIST RT-03 English CTS Eval				
		Confusion	FA	Miss	Confusion	FA	Miss
i-vector	Naive	26.41		3.55	35.35	4.66	2.62
	Links	25.40	2.40		33.56		
	K-Means	22.86	2.40		24.38		
	Spectral	14.59			13.84		
d-vector	Naive	12.41		4.51	18.76	4.09	4.45
	Links	11.02	1.04		18.56		
	K-Means	7.29	1.94		7.80		
	Spectral	6.03			3.76		

Method	Confusion	FA	Miss	Method	Confusion	FA	Miss			
Our model	12.0	2.2	4.6	Our model	5.97	2.51	4.06			
Castaldo [4]	13.7	_	_	Zajíc [9]	7.84	—	—			
Shum [5]	14.5	_	_	Table (Left). DER (%) on NIST SRE 2000 CALLHOME.						
Senoussaoui [6]	12.1	_	_	VB for Variational Bayesian resegmentation.						
Sell [7] (+VB)	13.7 (11.5)	_	_	Table (Up). DER (%) on CALLHOME American English						
Romero [8] (+VB)	12.8 (9.9)	_		2-speaker subset (CH-109).						

[5] Stephen H Shum, et al., "Unsupervised methods for speaker diarization: An integrated and iterative approach," TASLP 2013.

[6] Mohammed Senoussaoui, et al., "A study of the cosine distance-based mean shift for telephone speech diarization," TASLP 2014.

[7] Gregory Sell, et al., "Diarization resegmentation in the factor analysis subspace," ICASSP 2015.

[8] Daniel Garcia-Romero, et al., "Speaker diarization using deep neural network embeddings," ICASSP 2017. [9] Zbyněk Zajíc, et al., "Speaker diarization using convolutional neural network for statistics accumulation refinement," INTERSPEECH 2017.

IEEE Signal Processing Society

Experiment Results

- **Dev Set** Separated from Eval Set
- **Eval Set** Standard public datasets: NIST RT-03, NIST SRE 2000, *etc.*
- Tune VAD, window size/step, refinement parameters, etc.

Report DER

Fig. Our network is completely trained on out-of-domain data: voice search vs. telephone speech

Table. DER (%) on English-only datasets for different embeddings and clustering algorithms.

References

[1] Li Wan, et al., "Generalized end-to-end loss for speaker verification," arXiv:1710.10467, 2017.

[2] Georg Heigold, et al., "End-to-end text-dependent speaker verification," ICASSP 2016.

[3] Philip Andrew Mansfield, et al., "Links: A high dimensional online clustering method," arXiv:1801.10123, 2018. [4] Fabio Castaldo, et al., "Stream-based speaker segmentation using speaker factors and eigenvoices," ICASSP

