

Derive fully distributed algorithms that recursively estimate \mathbf{x}_n at instant n given $\mathbf{y}_{0:n,1:R}$ defined as the vector that collects the observations $\mathbf{y}_{k,r}$.

over all possible p.d.f.'s p^* , where $\sum_{u \in \bar{N}(r)} a_{r,u} = 1, \forall r \in \mathcal{V}$.

COOPERATIVE TRACKING USING MARGINAL DIFFUSION PARTICLE FILTERS

Marcelo G. S. Bruno¹ (bruno@ita.br) and Stiven S. Dias² (stiven.dias@embraer.com.br)

¹Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil ²Embraer S.A., São José dos Campos, Brazil

$$\sum_{\in \bar{N}(r)} a_{r,u} D_{KL}(p^{\star} || \tilde{p}_{n|n,u})$$

ATC MARGINAL DIFFUSION PF

Marginal Particle Filter Adapt Step

Assume that the posterior p.d.f. $p_{n-1|n-1,r}$ at node r at instant n-1 is approximated in a Monte Carlo sense by

$$p_{n-1|n-1,r}(\mathbf{x}_{n-1}) \approx \sum_{j=1}^{J} w_{n-1,r}^{(j)} \delta(\mathbf{x}_{n-1} - \mathbf{x}_{n-1,r}^{(j)}).$$

Then, the new set of weighted samples representing the posterior p.d.f. $p_{n|n,r}$ at instant n is given by

$$\widetilde{\mathbf{x}}_{n,r}^{(j)} \sim \pi_r$$

$$\tilde{w}_{n,r}^{(j)} \propto \left[\prod_{u \in \bar{N}(r)} p(\mathbf{y}_{n,u} | \tilde{\mathbf{x}}_{n,r}^{(j)})\right]$$

for $j \in \{1, \ldots, J\}$, where the proposal p.d.f. $\pi_{n|n-1,r}(\mathbf{x}_n) = \mathcal{N}(\mathbf{x}_n|$

is based on an EKF Gaussian posterior such that

$$\mathbf{m}_{n|n-1,r} = \mathbf{f}_{n-1}(\hat{\mathbf{x}}_{n-1|n-1,r})$$

$$\mathbf{\Sigma}_{n|n-1,r} = \tilde{\mathbf{F}}_{n-1} \mathbf{P}_{n-1|n-1,r} \tilde{\mathbf{F}}_{n-1}^{T} + \mathbf{G}_{n-1} \mathbf{Q}_{n-1} \mathbf{G}_{n-1}^{T}.$$

► Combine Step

We create first a Gaussian approximation at each node $r \in \mathcal{V}$

$$\tilde{p}_{n|n,r}(\mathbf{x}_n) \approx \mathcal{N}(\mathbf{x}_n | \tilde{\mathbf{x}}_{n|n,r}, \tilde{\mathbf{P}}_{n|n,r})$$

with

$$\tilde{\mathbf{x}}_{n|n,r} = \sum_{l=1}^{J} \tilde{w}_{n,r}^{(l)} \, \tilde{\mathbf{x}}_{n|n,r}^{(l)}$$
$$\tilde{\mathbf{P}}_{n|n,r} = \sum_{l=1}^{J} \tilde{w}_{n,r}^{(l)} (\mathbf{x}_{n|n,r}^{(l)} - \tilde{\mathbf{x}}_{n|n,r}) (\mathbf{x}_{n|n,r}^{(l)} - \tilde{\mathbf{x}}_{n|n,r})^{T}.$$

Thus, the merged p.d.f. $p_{n|n,r}$ at node r is also Gaussian

$$p_{n|n,r}(\mathbf{x}_n) \approx \mathcal{N}(\mathbf{x}_n | \hat{\mathbf{x}}_{n|n,r}, \mathbf{P}_{n|n,r})$$

with fused covariance matrix and mean vector given by

$$(\mathbf{P}_{n|n,r})^{-1} = \sum_{u \in \bar{N}(r)} a_{r,u} (\tilde{\mathbf{P}}_{n|n,u})^{-1}$$
$$\hat{\mathbf{x}}_{n|n,r} = \mathbf{P}_{n|n,r} \left[\sum_{u \in \bar{N}(r)} a_{r,u} (\tilde{\mathbf{P}}_{n|n,u})^{-1} \tilde{\mathbf{x}}_{n|n,u} \right].$$

Finally, node r resamples $\mathbf{x}_{n,r}^{(j)} \sim \mathcal{N}(\mathbf{x}_n | \hat{\mathbf{x}}_{n|n,r}, \mathbf{P}_{n|n,r})$ and resets $w_{n,r}^{(j)} = 1/J$ for $j \in \{1, ..., J\}$.

$$|n-1,r(\mathbf{x}_n)|$$

$$\frac{\sum_{l=1}^{J} w_{n-1,r}^{(l)} p(\tilde{\mathbf{x}}_{n,r}^{(j)} | \mathbf{x}_{n-1,r}^{(l)})}{\pi_{n|n-1,r}(\tilde{\mathbf{x}}_{n,r}^{(j)})}$$

$$\mathbf{n} \mid \mathbf{m}_{n|n-1,r}, \mathbf{\Sigma}_{n|n-1,r})$$

MARGINAL RNDEX DIFFUSION PF

► Random Exchange Diffusion Step

- Node r receives from node s a Gaussian approximation at instant n-1of the posterior p.d.f. $p(\mathbf{x}_{n-1}|\tilde{\mathbf{y}}_{0:n-1,s});$
- Then, node r resamples $\mathbf{x}_{n-1,s}^{(j)} \sim \mathcal{N}(\mathbf{x}_{n-1} | \hat{\mathbf{x}}_{n-1|n-1,s}, \mathbf{F})$ set $w_{n-1,s}^{(j)} = 1/J$ for $j \in \{1, \dots, J\}$.

Remark

At	the	end	of	the	random	node	path	$\{l$
noc	le	l_n h	las	a	Monte	Carlo	rep	res
$p(\mathbf{x})$	$\mathbf{x}_n \widetilde{\mathbf{y}}_0 $	$,l_0 \widetilde{\mathbf{y}}_{1,l_2}$	••	$\cdot \ \widetilde{\mathbf{y}}_{n,l}$	(n).			

► Local Data Fusion Step

	$Random \\ Exchanges$
3})	
	$S_1 \leftrightarrow S_2 \\ S_2 \leftrightarrow S_3$
, <u>2</u>)	$S_2 \leftrightarrow S_3 \\ S_1 \leftrightarrow S_2$
, <u>1</u>)	$S_1 \leftrightarrow S_2 \\ S_2 \leftrightarrow S_3$

$$\mathbf{P}_{n-1|n-1,s}$$
) and

SIMULATION EXAMPLE

► The random sequence $\{\mathbf{x}_n\}$ evolves in time according to the linear, white-noise acceleration model

 $\mathbf{x}_{n+1} = \mathbf{F} \mathbf{x}_n + \mathbf{u}_n.$

► At each instant n, R = 25 RSS sensors record dBm measurements $\{y_{n,r}\}$ at each network location r such that

$$y_{n,r} = \underbrace{P_0 - 10\zeta_r \log_{10} \left(\frac{||\mathbf{H}\mathbf{x}_n - \mathbf{x}_r||}{d_0}\right)}_{h_{n,r}(\mathbf{x}_n)} + v_{n,r}.$$

► Empirical RMS position estimate error

Communication and processing performances

Evaluated	$\mathbf{R}\mathbf{X}$	$\mathbf{T}\mathbf{X}$	Duty
Algorithm	Rate	Rate	Cycle
RndEx-MPF	$148 \mathrm{B/s}$	$132 \mathrm{B/s}$	2.7%
Iterative ATC MPF	$2.9\mathrm{KB/s}$	$604 \mathrm{B/s}$	2.8%
Non-Iterative ATC MPF	317 B/s	$64\mathrm{B/s}$	2.4%

REFERENCES

- Bruno, M. G. S. and Dias, S. S., "A Bayesian Interpretation of **Distributed Diffusion Filtering Algorithms**," *IEEE Signal* Processing Magazine, 2018 (accepted).
- Dias, S. S. and Bruno, M. G. S., "**Performance Bounds for Cooperative RSS Emitter Tracking Using Diffusion Particle** Filters," 25th European Signal Processing Conference, 2017.
- Dias, S. S. and Bruno, M. G. S., "**Distributed Bernoulli Filters** for Joint Detection and Tracking in Sensor Networks," IEEE Transactions on Signal and Information Processing over *Networks*, vol. 2, no. 3, pp. 260–275, September 2016.