

INSENSE: INCOHERENT SENSOR SELECTION FOR SPARSE SIGNALS

Amirali Aghazadeh¹, Mohammad Golbabaee², Andrew Lan³, Richard Baraniuk⁴

¹Electrical Engineering Department Stanford University, ² Institute for Digital Communication University of Edinburgh, ³Electrical Engineering Department Princeton University, ⁴Electrical and Computer Engineering Rice University

Abstract

- Sensor selection: Intelligently selecting a small subset of a collection of available sensors
- The majority of sensor selection algorithms find the subset of sensors that best recovers an arbitrary signal from a number of linear measurements that is larger than the dimension of the signal
- We develop a new sensor selection algorithm for sparse signals that finds a subset of sensors that best recovers such signals from a number of measurements that is much smaller than the dimension of the signal
- Existing sensor selection algorithms cannot be applied in such situations
- Our proposed Incoherent Sensor Selection (Insense) algorithm minimizes a coherencebased cost function from signal processing

Sensor Selection Formulation

• We propose to find the set of sensors that minimizes the average column coherence of Φ_Ω :

$$\mu_{\text{avg}}^{2}(\Phi_{\Omega}) = \frac{1}{\binom{N}{2}} \sum_{1 \le i \le j \le N} \mu_{ij}^{2}(\Phi_{\Omega})$$

• We reformulate minimizing the coherence objective as this optimization problem:

$$\min_{z \in \{0,1\}^D} \sum_{1 \le i < j \le N} \frac{G_{ij}^2}{G_{ii} G_{jj}}, \text{subject to } G = \Phi^T Z \Phi, \ \mathbf{1}^T z = M$$

· Then, we relax this boolean optimization problem using a box constraint:

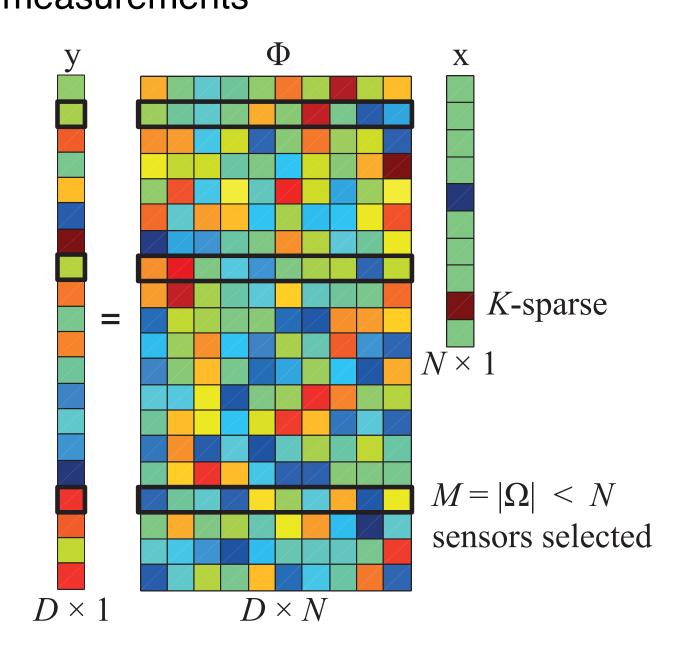
$$\min_{z \in [0,1]^D} \sum_{1 \le i < j \le N} \frac{G_{ij}^2}{G_{ii} G_{jj}}, \text{s.t. } G = \Phi^T Z \Phi, \ \mathbf{1}^T z = M$$

- The optimization problem supports an efficient gradient—projection algorithm to find an approximate solution.
- In order to make the optimization well-defined we add two small constants to the objective as follows:

$$f_{\epsilon}(z) = \sum_{1 \le i < j \le N} \frac{G_{ij}^2 + \epsilon_1}{G_{ii} G_{jj} + \epsilon_2} \text{ where } G = \Phi^T Z \Phi$$

Sensor Selection Problem

- · ${\it D}$ available sensors obtain linear measurements of a signal $x \in \mathbb{R}^N$ according to $y = \Phi x$
- The sensor selection problem is of finding a subset Ω of sensors (rows of Φ) of size $|\Omega|=M$ such that the signal x can be recovered from its M linear measurements



- · Classical Sensor Selection
 - Signal x is arbitrary (dense or sparse)
 - Overdetermined regime M > N
 - Closed form solution (least squares problem)
- Sparse Sensor Selection
 - Signal x is sparse
 - Underdetermined regime $M \ll N$
 - No closed form solution

The Insense Algorithm

- The objective function above is smooth and differentiable but nonconvex
- The box constraints on z are linear
- We minimize the objective using the following iterative gradientprojection algorithm

Algorithm 1: Insense

Input: Φ

Output: Z = diag(z)

Initialization:

$$z \leftarrow z_0;$$

$$G \leftarrow \Phi^T Z \Phi$$
;

while stoppage criterion = false do

- 1. $k \leftarrow k + 1$;
- 2. update $\nabla_z f(z^k)$ based on equation (7);
- 3. $\gamma_k \leftarrow \text{line search}(f, \nabla_z f(z^k), z^k);$
- 4. $z^k \leftarrow z^k \gamma^k \nabla_z f(z^k)$ {gradient step};
- 5. $z^{k+1} \leftarrow P_{SBS}(z^k)$ {SBS projection step};

end

• P_{SBS} denotes the projection onto the convex set defined by the scaled boxed-simplex (SBS) constraints $\mathbf{1}^Tz=M$ and $z=[0,1]^D$

$$\min_{z} \frac{1}{2} ||z - y||_{2}^{2}, \text{s.t.} \sum_{i} z_{i} = M, z_{i} \in [0, 1]_{\forall i=1, \dots, D}$$

We develop a method to efficiently perform this projection step

The SBS Projection

- Using the KKT condition and some manipulations
- · The solution to the SBS projection is given by

$$z_i = \max(\min(y_i - \lambda, 1), 0)$$

where,

$$\lambda = (M - K_1 - \sum_{i \in \zeta} y_i) / |\zeta|$$

and the set ζ can be found with $\mathcal{O}(D\mathrm{log}D)$

Results

Structured Sensing Matrices Identity/Gaussian sensing matrix

Algorithms	$\mu_{avg(\Phi_\Omega)}$	$FP(\Phi_{\Omega})$	$\mathbf{CN}(\Phi_{\Omega})$	BP accuracy %
Insense	0.3061 ± 0.0047	1019 ±313	1.93 ± 0.19	92.27 ± 1.42
EigenMaps	_	0.00 ± 0.00	1.00 ± 0.00	4.00 ± 0.00
MSE-G	0.3872 ± 0.0305	1155 ± 374	11.51 ± 0.93	57.91 ± 1.09
FrameSense	_	0.00 ± 0.00	1.00 ± 0.00	4.00 ± 0.00
MI-G	_	0.00 ± 0.00	1.00 ± 0.00	4.00 ± 0.00
Entropy-G	_	0.00 ± 0.00	1.00 ± 0.00	4.00 ± 0.00
Determinant-G	_	0.00 ± 0.00	1.00 ± 0.00	4.00 ± 0.00
Greedy SS	_	0.00 ± 0.00	1.00 ± 0.00	4.00 ± 0.00
Convex SS	0.3137 ± 0.0075	2279 ± 470	2.22 ± 0.25	88.64 ± 3.64

Uniform/Gaussian sensing matrix

Algorithms	$\mu_{ extsf{avg}}(\Phi_{\Omega})$	$FP(\Phi_{\Omega})$	$\mathrm{CN}(\Phi_\Omega)$	Gaussian %	BP accuracy %
Insense	0.3165 ± 0.0023	9320 ± 3292	1.46 ± 0.07	100 ± 0	58.55 ± 2.64
EigenMaps	0.3215 ± 0.0021	7230 ± 2319	2.07 ± 0.12	90 ± 0	57.60 ± 3.72
MSE-G	0.5805 ± 0.0440	78530 ± 12450	5.99 ± 0.31	17 ± 4	49.90 ± 3.54
FrameSense	0.3273 ± 0.0059	6095 ± 1708	3.19 ± 0.92	84 ± 5	58.15 ± 2.26
MI-G	0.6814 ± 0.0556	93260 ± 109250	6.26 ± 0.77	7 ± 4	51.60 ± 5.21
Entropy-G	0.7007 ± 0.0804	98950 ± 16216	$6.61\!\pm\!0.48$	5 ± 7	53.70 ± 5.21
Determinant-G	0.7303 ± 0.0545	105700 ± 11228	6.57 ± 0.31	3 ± 4	55.50 ± 4.50
Greedy SS	0.7303 ± 0.0545	105700 ± 11228	5.57 ± 0.31	3 ± 4	55.50 ± 4.50
Convex SS	0.5788 ± 0.1140	75270 ± 27383	5.97 ± 0.77	20 ± 15	54.40 ± 4.20

DNA Sensing Dataset

- Objective: Select **DNA probes** to detect bacteria
- Sensing matrix: Hybridization affinity of $D=100\,$ random DNA probes to N=42 bacterial species

		F	3P accu	racy in	detecti	ng orga	nisms 9	%	
Number of organisms		K = 2	2		K = 3			K = 5	
Number of probes	8	12	15	12	15	20	15	20	25
Insense	68.33	94.78	99.65	71.74	93.95	99.53	51.95	92.71	99.10
EigenMaps	49.65	84.69	94.66	54.68	78.09	96.25	27.47	72.13	95.30
MSE-G	60.79	91.53	97.91	67.16	89.15	98.40	43.26	83.52	97.40
FrameSense	61.83	88.40	95.71	62.32	82.29	98.36	35.16	81.92	96.50
MI-G	59.98	89.68	96.40	65.69	84.10	97.39	37.96	79.72	96.00
Entropy-G	61.25	91.53	98.61	66.35	88.96	99.19	42.86	89.61	97.50
Determinant-G	46.75	82.13	94.55	48.97	76.13	96.03	24.48	72.73	92.81
Greedy SS	57.54	87.70	96.87	59.65	84.64	97.34	36.16	80.22	94.11
Convex SS	53.36	87.94	98.94	57.58	87.59	98.89	38.46	83.52	98.40
Random	61.53	88.79	96.66	62.29	86.15	97.72	38.88	82.94	86.44

Insense requires significantly smaller number
 of probes to achieve the same accuracy

Summary

- Incoherent sensor selection (Insense) algorithm for the underdetermined sensor selection
- Optimizes the average squared coherence of the columns of the selected sensors (rows)
- Interesting future direction:
 - Large-scale sensors selection
 - Sensor selection in classification and clustering

A. Aghazadeh, R. G. Baraniuk et al. "Insense: Incoherent sensor selection for sparse signals," Acoustics, Speech and Signal Processing (ICASSP-18).

A. Aghazadeh, R. G. Baraniuk et al. "Universal microbial diagnostics using random DNA probes." Science advances 2.9 (2016): e1600025.