INSENSE: INCOHERENT SENSOR SELECTION FOR SPARSE SIGNALS Amirali Aghazadeh¹, Mohammad Golbabaee², Andrew Lan³, Richard Baraniuk⁴ ¹Electrical Engineering Department Stanford University, ² Institute for Digital Communication University of Edinburgh, ³Electrical Engineering Department Princeton University, ⁴Electrical and Computer Engineering Rice University #### **Abstract** - Sensor selection: Intelligently selecting a small subset of a collection of available sensors - The majority of sensor selection algorithms find the subset of sensors that best recovers an arbitrary signal from a number of linear measurements that is larger than the dimension of the signal - We develop a new sensor selection algorithm for sparse signals that finds a subset of sensors that best recovers such signals from a number of measurements that is much smaller than the dimension of the signal - Existing sensor selection algorithms cannot be applied in such situations - Our proposed Incoherent Sensor Selection (Insense) algorithm minimizes a coherencebased cost function from signal processing ### **Sensor Selection Formulation** • We propose to find the set of sensors that minimizes the average column coherence of Φ_Ω : $$\mu_{\text{avg}}^{2}(\Phi_{\Omega}) = \frac{1}{\binom{N}{2}} \sum_{1 \le i \le j \le N} \mu_{ij}^{2}(\Phi_{\Omega})$$ • We reformulate minimizing the coherence objective as this optimization problem: $$\min_{z \in \{0,1\}^D} \sum_{1 \le i < j \le N} \frac{G_{ij}^2}{G_{ii} G_{jj}}, \text{subject to } G = \Phi^T Z \Phi, \ \mathbf{1}^T z = M$$ · Then, we relax this boolean optimization problem using a box constraint: $$\min_{z \in [0,1]^D} \sum_{1 \le i < j \le N} \frac{G_{ij}^2}{G_{ii} G_{jj}}, \text{s.t. } G = \Phi^T Z \Phi, \ \mathbf{1}^T z = M$$ - The optimization problem supports an efficient gradient—projection algorithm to find an approximate solution. - In order to make the optimization well-defined we add two small constants to the objective as follows: $$f_{\epsilon}(z) = \sum_{1 \le i < j \le N} \frac{G_{ij}^2 + \epsilon_1}{G_{ii} G_{jj} + \epsilon_2} \text{ where } G = \Phi^T Z \Phi$$ ## **Sensor Selection Problem** - · ${\it D}$ available sensors obtain linear measurements of a signal $x \in \mathbb{R}^N$ according to $y = \Phi x$ - The sensor selection problem is of finding a subset Ω of sensors (rows of Φ) of size $|\Omega|=M$ such that the signal x can be recovered from its M linear measurements - · Classical Sensor Selection - Signal x is arbitrary (dense or sparse) - Overdetermined regime M > N - Closed form solution (least squares problem) - Sparse Sensor Selection - Signal x is sparse - Underdetermined regime $M \ll N$ - No closed form solution ## The Insense Algorithm - The objective function above is smooth and differentiable but nonconvex - The box constraints on z are linear - We minimize the objective using the following iterative gradientprojection algorithm #### **Algorithm 1:** Insense **Input**: Φ Output: Z = diag(z) **Initialization**: $$z \leftarrow z_0;$$ $$G \leftarrow \Phi^T Z \Phi$$; while stoppage criterion = false do - 1. $k \leftarrow k + 1$; - 2. update $\nabla_z f(z^k)$ based on equation (7); - 3. $\gamma_k \leftarrow \text{line search}(f, \nabla_z f(z^k), z^k);$ - 4. $z^k \leftarrow z^k \gamma^k \nabla_z f(z^k)$ {gradient step}; - 5. $z^{k+1} \leftarrow P_{SBS}(z^k)$ {SBS projection step}; #### end • P_{SBS} denotes the projection onto the convex set defined by the scaled boxed-simplex (SBS) constraints $\mathbf{1}^Tz=M$ and $z=[0,1]^D$ $$\min_{z} \frac{1}{2} ||z - y||_{2}^{2}, \text{s.t.} \sum_{i} z_{i} = M, z_{i} \in [0, 1]_{\forall i=1, \dots, D}$$ We develop a method to efficiently perform this projection step ## The SBS Projection - Using the KKT condition and some manipulations - · The solution to the SBS projection is given by $$z_i = \max(\min(y_i - \lambda, 1), 0)$$ where, $$\lambda = (M - K_1 - \sum_{i \in \zeta} y_i) / |\zeta|$$ and the set ζ can be found with $\mathcal{O}(D\mathrm{log}D)$ #### Results ## Structured Sensing Matrices Identity/Gaussian sensing matrix | Algorithms | $\mu_{avg(\Phi_\Omega)}$ | $FP(\Phi_{\Omega})$ | $\mathbf{CN}(\Phi_{\Omega})$ | BP accuracy % | |---------------|--------------------------|---------------------|------------------------------|------------------| | Insense | 0.3061 ± 0.0047 | 1019 ±313 | 1.93 ± 0.19 | 92.27 ± 1.42 | | EigenMaps | _ | 0.00 ± 0.00 | 1.00 ± 0.00 | 4.00 ± 0.00 | | MSE-G | 0.3872 ± 0.0305 | 1155 ± 374 | 11.51 ± 0.93 | 57.91 ± 1.09 | | FrameSense | _ | 0.00 ± 0.00 | 1.00 ± 0.00 | 4.00 ± 0.00 | | MI-G | _ | 0.00 ± 0.00 | 1.00 ± 0.00 | 4.00 ± 0.00 | | Entropy-G | _ | 0.00 ± 0.00 | 1.00 ± 0.00 | 4.00 ± 0.00 | | Determinant-G | _ | 0.00 ± 0.00 | 1.00 ± 0.00 | 4.00 ± 0.00 | | Greedy SS | _ | 0.00 ± 0.00 | 1.00 ± 0.00 | 4.00 ± 0.00 | | Convex SS | 0.3137 ± 0.0075 | 2279 ± 470 | 2.22 ± 0.25 | 88.64 ± 3.64 | #### Uniform/Gaussian sensing matrix | Algorithms | $\mu_{ extsf{avg}}(\Phi_{\Omega})$ | $FP(\Phi_{\Omega})$ | $\mathrm{CN}(\Phi_\Omega)$ | Gaussian % | BP accuracy % | |---------------|------------------------------------|---------------------|----------------------------|------------|------------------| | Insense | 0.3165 ± 0.0023 | 9320 ± 3292 | 1.46 ± 0.07 | 100 ± 0 | 58.55 ± 2.64 | | EigenMaps | 0.3215 ± 0.0021 | 7230 ± 2319 | 2.07 ± 0.12 | 90 ± 0 | 57.60 ± 3.72 | | MSE-G | 0.5805 ± 0.0440 | 78530 ± 12450 | 5.99 ± 0.31 | 17 ± 4 | 49.90 ± 3.54 | | FrameSense | 0.3273 ± 0.0059 | 6095 ± 1708 | 3.19 ± 0.92 | 84 ± 5 | 58.15 ± 2.26 | | MI-G | 0.6814 ± 0.0556 | 93260 ± 109250 | 6.26 ± 0.77 | 7 ± 4 | 51.60 ± 5.21 | | Entropy-G | 0.7007 ± 0.0804 | 98950 ± 16216 | $6.61\!\pm\!0.48$ | 5 ± 7 | 53.70 ± 5.21 | | Determinant-G | 0.7303 ± 0.0545 | 105700 ± 11228 | 6.57 ± 0.31 | 3 ± 4 | 55.50 ± 4.50 | | Greedy SS | 0.7303 ± 0.0545 | 105700 ± 11228 | 5.57 ± 0.31 | 3 ± 4 | 55.50 ± 4.50 | | Convex SS | 0.5788 ± 0.1140 | 75270 ± 27383 | 5.97 ± 0.77 | 20 ± 15 | 54.40 ± 4.20 | #### **DNA Sensing Dataset** - Objective: Select **DNA probes** to detect bacteria - Sensing matrix: Hybridization affinity of $D=100\,$ random DNA probes to N=42 bacterial species | | | F | 3P accu | racy in | detecti | ng orga | nisms 9 | % | | |---------------------|-------|-------|---------|---------|---------|---------|---------|-------|-------| | Number of organisms | | K = 2 | 2 | | K = 3 | | | K = 5 | | | Number of probes | 8 | 12 | 15 | 12 | 15 | 20 | 15 | 20 | 25 | | Insense | 68.33 | 94.78 | 99.65 | 71.74 | 93.95 | 99.53 | 51.95 | 92.71 | 99.10 | | EigenMaps | 49.65 | 84.69 | 94.66 | 54.68 | 78.09 | 96.25 | 27.47 | 72.13 | 95.30 | | MSE-G | 60.79 | 91.53 | 97.91 | 67.16 | 89.15 | 98.40 | 43.26 | 83.52 | 97.40 | | FrameSense | 61.83 | 88.40 | 95.71 | 62.32 | 82.29 | 98.36 | 35.16 | 81.92 | 96.50 | | MI-G | 59.98 | 89.68 | 96.40 | 65.69 | 84.10 | 97.39 | 37.96 | 79.72 | 96.00 | | Entropy-G | 61.25 | 91.53 | 98.61 | 66.35 | 88.96 | 99.19 | 42.86 | 89.61 | 97.50 | | Determinant-G | 46.75 | 82.13 | 94.55 | 48.97 | 76.13 | 96.03 | 24.48 | 72.73 | 92.81 | | Greedy SS | 57.54 | 87.70 | 96.87 | 59.65 | 84.64 | 97.34 | 36.16 | 80.22 | 94.11 | | Convex SS | 53.36 | 87.94 | 98.94 | 57.58 | 87.59 | 98.89 | 38.46 | 83.52 | 98.40 | | Random | 61.53 | 88.79 | 96.66 | 62.29 | 86.15 | 97.72 | 38.88 | 82.94 | 86.44 | Insense requires significantly smaller number of probes to achieve the same accuracy ## Summary - Incoherent sensor selection (Insense) algorithm for the underdetermined sensor selection - Optimizes the average squared coherence of the columns of the selected sensors (rows) - Interesting future direction: - Large-scale sensors selection - Sensor selection in classification and clustering A. Aghazadeh, R. G. Baraniuk et al. "Insense: Incoherent sensor selection for sparse signals," Acoustics, Speech and Signal Processing (ICASSP-18). A. Aghazadeh, R. G. Baraniuk et al. "Universal microbial diagnostics using random DNA probes." Science advances 2.9 (2016): e1600025.