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1. Background, Motivation and Our Contributions

I NOMA has been a key enabling technology to meet the requirements of 5G on
high spectral efficiency, massive connectivity, and low transmission latency;

I Most existing NOMA designs assumed Gaussian inputs. The drawbacks are:
. the implementation in reality will result in huge storage capacity, unaffordable

computational complexity and extremely long encoding/decoding delay;
. the actual transmitted signals in real communication systems are drawn from

finite-alphabet constellations, such as PAM, QAM, and PSK;
. Applying the results derived from the Gaussian inputs to the signals with

finite-alphabet inputs can lead to significant performance loss.
I We consider the NOMA design for a classical two-user MAC with QAM

constellations at both transmitters, whose sizes are not necessarily the same.
. We aim to maximize the minimum Euclidean distance of the received

sum-constellation for a ML receiver where the formulated problem is a mixed
continuous-discrete optimization problem and is non-trivial to resolve;

. We discover that Farey sequence can be employed to tackle the formulated
problem. However, the existing Farey sequence is not applicable when the
constellation sizes of the two users are different;

. To address this challenge, we define a new type of Farey sequence, termed
punched Farey sequence. Based on the punched Farey sequence and its
properties, we manage to resolve the mixed continuous-discrete optimization
problem by providing a neat closed-form optimal solution.

2. System Model and Problem Formulation
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Figure: Two-User Real Gaussian Multiple Access Channel

I The received signal at the access point D can be written as:

y = |h̃1|w̃1s1 + |h̃2|w̃2s2 + n,

where sk ∈ {±(2`− 1)}Mk/2
`=1 , k = 1, 2 are drawn from a standard PAM

constellation with equal probability, 0 < w̃1 ≤ 1 and 0 < w̃2 ≤ 1 are the
weighting coefficients;

I A coherent maximum-likelihood (ML) detector is used by the access point D to
estimate the transmitted signals in a symbol-by-symbol fashion. Mathematically,
the estimated signals can be expressed as
(ŝ1, ŝ2) = argmin(s1,s2)

∣∣y − (|h̃1|w̃1s1 + |h̃2|w̃2s2)
∣∣;

I The minimum Euclidean distance between two constellations are given by

d(m,n) =
1

2
|y(s1, s2)− y(s̃1, s̃2)| =

∣∣|h̃1|w̃1n− |h̃2|w̃2m
∣∣,

(m,n) ∈ Z2
(M1−1,M2−1) \ {(0, 0)}.

3. The Design Problem for the Finite-Alphabet NOMA

The Weighting Coefficients Design Problem:
Problem 1: Find the optimal (w̃∗1, w̃

∗
2) subject to the individual average power

constraint such that the minimum Euclidean distance d∗ of the received
constellation points is maximized, i.e.,

(w̃∗1, w̃
∗
2) = arg max

(w̃1,w̃2)
min

(m,n)∈Z2
(M1−1,M2−1)

\{(0,0)}
d(m,n)

s.t. 0 < w̃1 ≤ 1 and 0 < w̃2 ≤ 1.

To that end, we should solve the following optimization problem first:
Problem 2: Find the optimal (w̃∗1(k), w̃

∗
2(k)) such that

g
(bk
ak
,
bk+1

ak+1

)
= max

(w̃1,w̃2)
min

(m,n)∈F2
(M1−1,M2−1)

d(m,n)

s.t.
bk

ak
<
|h̃2|w̃2

|h̃1|w̃1

≤
bk+1

ak+1

, 0 < w̃1 ≤ 1 and 0 < w̃2 ≤ 1,

where the punched Farey sequence given by PM1−1
M2−1 =

(
b1
a1
, b2
a2
, · · · , bC

aC

)
whose

definition will be elaborated in the following part.

4. Punched Farey Sequence

We now propose a new definition in number theory called Punched Farey
sequence which characterizes the relationship between two positive integers:
Definition: The punched Farey sequence PL

K is the ascending sequence of
irreducible fractions whose denominators are no greater than K and numerators
are no greater than L.
Example: P2

5 is the ordered sequence
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Properties:
I If n1

m1
and n2

m2
are two adjacent terms in PL

K (min {K,L} ≥ 2) such that
n1

m1
< n2

m2
, then, 1) n1+n2

m1+m2
∈
(
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)
; 2)

m1n2 −m2n1 = 1; 3) If n1 + n2 ≤ L, then m1 +m2 > K and if
m1 +m2 ≤ K, then n1 + n2 > L; 4) n1 + n2 ≥ 1 where the equality is
attained if and only if n1

m1
= 0

1
and n2
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= 1

K
. Likewise, m1 +m2 ≥ 1 where

the equality is attained if and only if n1
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= L
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= 1

0
.

I If n1
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, n2
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and n3
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are three consecutive terms in PL
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such that n1
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, then n2
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I Let n1

m1
, n2

m2
, n3

m3
, n4

m4
∈ PL

K with min {K,L} ≥ 3. If n1
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where n2
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, n3

m3
are successive in PL

K, then n1+n3
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and n3

m3
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5.1 The Solution to Problem 2

We now can solve Problem 2, i.e., restricting |h̃2|w̃2

|h̃1|w̃1
into a certain punched

Farey interval determined by the corresponding Farey pair where a closed-form
solution is attainable,

Lemma 1: The optimal solution to Problem 2 is given as follows:

I If |h̃2|
|h̃1|
≤ bk+bk+1

ak+ak+1
, then g
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5.2 The Solution to Problem 1

Theorem: Closed-form optimal weighting coefficients: The optimal solution to
Problem 1 in terms of (w∗1, w

∗
2) is given by:
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Corollary: The sum-constellation at the receiver is a standardM2
1M

2
2 -QAM

constellation with the minimum Euclidean distance dnoma, where a quantization
receiver can be employed to implement ML detection [R1].

Example: If |h2|
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2
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2
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Recall that s1 ∈ {±(2k − 1)}M1/2
k=1 , s2 ∈ {±(2k − 1)}M2/2

k=1 , and therefore

M2s1 + s2 ∈ {±(2k − 1)}M1M2/2
k=1 .

6. Numerical Results

(a) (b)

Figure: Comparison between the Proposed-NOMA, CR-NOMA, TDMA and FDMA methods in
Rayleigh fading with variances of the channel coefficients of δ21 and δ22 of User-1 and User-2,
respectively: (a) (δ21, δ

2
2) = (1, 1), (b) (δ21, δ

2
2) = (1, 1/64).

I Each user adopts 64-QAM for the proposed NOMA design and 64-PSK is used
by each user in CR-NOMA. Meanwhile, for TDMA and FDMA methods, each
user uses 4096-QAM.

I From Fig.(1a) and Fig. (1b), the proposed NOMA design outperforms all the
benchmark designs in moderate and high SNR regimes. The FDMA method has
a better error performance than the TDMA scheme as expected. The CR-NOMA
has the highest BER since the PSK constellation has a smaller Euclidean
distance under the same power constraint compared with QAM constellation.

I The BER performance gap between the proposed NOMA and OMA methods are
enlarged with “near-far” channel realizations.
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