Finite-Alphabet NOMA for Two-User Uplink Channel

1. Background, Motivation and Our Contributions

- NOMA has been a key enabling technology to meet the requirements of 5 G on high spectral efficiency, massive connectivity, and low transmission latency;
- Most existing NOMA designs assumed Gaussian inputs. The drawbacks are: \triangleright the implementation in reality will result in huge storage capacity, unaffordable computational complexity and extremely long encoding/decoding delay;
the actual transmitted signals in real communication systems are drawn from finite-alphabet constellations, such as PAM, QAM, and PSK;
Applying the results derived from the Gaussian inputs to the signals with finite-alphabet inputs can lead to significant performance loss.
- We consider the NOMA design for a classical two-user MAC with QAM constellations at both transmitters, whose sizes are not necessarily the same. $>$ We aim to maximize the minimum Euclidean distance of the received sum-constellation for a ML receiver where the formulated problem is a mixed continuous-discrete optimization problem and is non-trivial to resolve; \rightarrow We discover that Farey sequence can be employed to tackle the formulated problem. However, the existing Farey sequence is not applicable when the constellation sizes of the two users are different;
To address this challenge, we define a new type of Farey sequence, termed punched Farey sequence. Based on the punched Farey sequence and its properties, we manage to resolve the mixed continuous-discrete optimization problem by providing a neat closed-form optimal solution.

2. System Model and Problem Formulation

Figure: Two-User Real Gaussian Multiple Access Channel

- The received signal at the access point D can be written as

$$
y=\left|\tilde{h}_{1}\right| \tilde{w}_{1} s_{1}+\left|\tilde{h}_{2}\right| \tilde{w}_{2} s_{2}+n
$$

where $s_{k} \in\{ \pm(2 \ell-1)\}_{\ell=1}^{M_{k} / 2}, k=1,2$ are drawn from a standard PAM constellation with equal probability, $0<\tilde{w}_{1} \leq 1$ and $0<\tilde{w}_{2} \leq 1$ are the weighting coefficients;
A coherent maximum-likelihood (ML) detector is used by the access point D to estimate the transmitted signals in a symbol-by-symbol fashion. Mathematically the estimated signals can be expressed as
$\left(\hat{s}_{1}, \hat{s}_{2}\right)=\arg \min _{\left(s_{1}, s_{2}\right)}\left|y-\left(\left|\tilde{h}_{1}\right| \tilde{w}_{1} s_{1}+\left|\tilde{h}_{2}\right| \tilde{w}_{2} s_{2}\right)\right| ;$

- The minimum Euclidean distance between two constellations are given by
$d(m, n)=\frac{1}{2}\left|y\left(s_{1}, s_{2}\right)-y\left(\tilde{s}_{1}, \tilde{s}_{2}\right)\right|=\left|\left|\tilde{h}_{1}\right| \tilde{w}_{1} n-\left|\tilde{h}_{2}\right| \tilde{w}_{2} m\right|$,
$(m, n) \in \mathbb{Z}_{\left(M_{1}-1, M_{2}-1\right)}^{2} \backslash\{(0,0)\}$.

3. The Design Problem for the Finite-Alphabet NOMA

The Weighting Coefficients Design Problem:
Problem 1: Find the optimal ($\tilde{w}_{1}^{*}, \tilde{w}_{2}^{*}$) subject to the individual average power constellation

$$
\begin{gathered}
\left(\tilde{w}_{1}^{*}, \tilde{w}_{2}^{*}\right)=\arg \max _{\left(\tilde{w}_{1}, \tilde{w}_{2}\right)} \min _{(m, n) \in \mathbb{Z}_{\left(M_{1}-1, M_{2}-1\right)}^{2} \backslash\{(0,0)\}} d(m, n) \\
\text { s.t. } 0<\tilde{w}_{1} \leq 1 \text { and } 0<\tilde{w}_{2} \leq 1 .
\end{gathered}
$$

To that end, we should solve the following optimization problem first: Problem 2: Find the optimal $\left(\tilde{w}_{1}^{*}(k), \tilde{w}_{2}^{*}(k)\right)$ such that

$$
\begin{aligned}
& g\left(\frac{b_{k}}{a_{k}}, \frac{b_{k+1}}{a_{k+1}}\right)=\max _{\left(\tilde{w}_{1}, \tilde{w}_{2}\right)} \min _{(m, n) \in \mathbb{F}_{\left(M_{1}-1, M_{2}-1\right)}} d(m, n) \\
& \text { s.t. } \frac{b_{k}}{a_{k}}<\frac{\left|\tilde{h}_{2}\right| \tilde{w}_{2}}{\left|\tilde{h}_{1}\right| \tilde{w}_{1}} \leq \frac{b_{k+1}}{a_{k+1}}, 0<\tilde{w}_{1} \leq 1 \text { and } 0<\tilde{w}_{2} \leq 1,
\end{aligned}
$$

where the punched Farey sequence given by $\mathfrak{P}_{M_{2}-1}^{M_{1}-1}=\left(\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}, \cdots, \frac{b_{C}}{a_{C}}\right)$ whose definition will be elaborated in the following part.

4. Punched Farey Sequence

We now propose a new definition in number theory called Punched Farey sequence which characterizes the relationship between two positive integers: Definition: The punched Farey sequence \mathfrak{P}_{K}^{L} is the ascending sequence of irreducible fractions whose denominators are no greater than \boldsymbol{K} and numerators are no greater than \boldsymbol{L}
Example: \mathfrak{P}_{5}^{2} is the ordered sequence $\left(\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}, \frac{2}{1}, \frac{1}{0}\right)$.

Properties

- If $\frac{n_{1}}{m_{1}}$ and $\frac{n_{2}}{m_{2}}$ are two adjacent terms in $\mathfrak{P}_{\boldsymbol{K}}^{L}(\min \{\boldsymbol{K}, L\} \geq 2)$ such that $\frac{n_{1}}{m_{1}}<\frac{n_{2}}{m_{2}}$, then, 1) $\left.\frac{n_{1}+n_{2}}{m_{1}+m_{2}} \in\left(\frac{n_{1}}{m_{1}}, \frac{n_{2}}{m_{2}}\right), \frac{m_{1}+m_{2}}{n_{1}+n_{2}} \in\left(\frac{m_{2}}{n_{2}}, \frac{m_{1}}{n_{1}}\right) ; 2\right)$ ${ }_{m_{1}} \boldsymbol{n}_{2}-m_{2} \boldsymbol{n}_{1}=1 ; 3$) If $\boldsymbol{n}_{1}+\boldsymbol{n}_{2} \leq \boldsymbol{m}$, then $m_{1}+m_{2}>\boldsymbol{m _ { 1 }} \boldsymbol{m _ { 1 }}$ and if $m_{1}+m_{2} \leq K$, then $\left.n_{1}+n_{2}>L ; 4\right) n_{1}+n_{2} \geq 1$ where the equality is attained if and only if $\frac{n_{1}}{m_{1}}=\frac{0}{1}$ and $\frac{n_{2}}{m_{2}}=\frac{1}{K}$. Likewise, $m_{1}+m_{2} \geq 1$ where the equality is attained if and only if $\frac{n_{1}}{m_{1}}=\frac{L}{1}$ and $\frac{n_{2}}{m_{2}}=\frac{1}{0}$.
- If $\frac{n_{1}}{m_{1}}, \frac{n_{2}}{m_{2}}$ and $\frac{n_{3}}{m_{3}}$ are three consecutive terms in \mathfrak{P}_{K}^{L} with $\min \{K, L\} \geq 2$ such that $\frac{n_{1}}{m_{1}}<\frac{n_{2}}{m_{2}}<\frac{n_{3}}{m_{3}}$, then $\frac{n_{2}}{m_{2}}=\frac{n_{1}+n_{3}}{m_{1}+m_{3}}$
- Let $\frac{n_{1}}{m_{1}}, \frac{n_{2}}{m_{2}}, \frac{n_{3}}{m_{3}}, \frac{n_{4}}{m_{4}} \in \mathfrak{P}_{K}^{L}$ with $\min \{\boldsymbol{K}, \boldsymbol{L}\} \geq 3$. If $\frac{n_{1}}{m_{1}}<\frac{n_{2}}{m_{2}}<\frac{n_{3}}{m_{3}}<\frac{n_{4}}{m_{4}}$, where $\frac{n_{2}}{m_{2}}, \frac{n_{3}}{m_{3}}$ are successive in \mathfrak{P}_{K}^{L}, then $\frac{n_{1}+n_{3}}{m_{1}+m_{3}} \leq \frac{n_{2}}{m_{2}}$ and $\frac{n_{3}}{m_{3}} \leq \frac{n_{2}+n_{4}}{m_{2}+m_{4}}$.
5.1 The Solution to Problem 2

We now can solve Problem 2, i.e., restricting $\frac{\left|\tilde{h}_{2}\right| \tilde{w}_{2}}{\left|\tilde{h}_{1}\right| \tilde{w}_{1}}$ into a certain punched Farey interval determined by the corresponding Farey pair where a closed-form solution is attainable,
Lemma 1: The optimal solution to Problem 2 is given as follows:

- If $\frac{\left|\tilde{h}_{2}\right|}{\left|\tilde{h}_{1}\right|} \leq \frac{b_{k}+b_{k+1}}{a_{k}+a_{k+1}}$, then $\boldsymbol{g}\left(\frac{b_{k}}{a_{k}}, \frac{b_{k+1}}{a_{k+1}}\right)=\frac{\left|\tilde{h}_{2}\right|}{b_{k}+b_{k+1}}$ and
$\left(\tilde{w}_{1}^{*}(k), \tilde{w}_{2}^{*}(k)\right)=\left(\frac{\tilde{h}_{2} \mid\left(a_{k}+a_{k+1}\right)}{\left|\tilde{h}_{1}\right|\left(b_{k}+b_{k+1}\right)}, 1\right)$
- If $\frac{\left|\tilde{h}_{2}\right|}{\left|\tilde{h}_{1}\right|}>\frac{b_{k}+b_{k+1}}{a_{k}+a_{k+1}}$, then $\boldsymbol{g}\left(\frac{b_{k}}{a_{k}}, \frac{b_{k+1}}{a_{k+1}}\right)=\frac{\left|\tilde{h}_{1}\right|}{a_{k}+a_{k+1}}$ and $\left(\tilde{w}_{1}^{*}(k), \tilde{w}_{2}^{*}(k)\right)=\left(1, \frac{\left|\tilde{h}_{1}\right|\left(b_{k}+b_{k+1}\right)}{\left|\tilde{h}_{2}\right|\left(a_{k}+a_{k+1}\right)}\right)$.

5.2 The Solution to Problem 1

Theorem: Closed-form optimal weighting coefficients: The optimal solution to Problem 1 in terms of $\left(w_{1}^{*}, w_{2}^{*}\right)$ is given by:
$>$ If $\frac{\left|h_{2}\right|}{\left|h_{1}\right|} \leq \sqrt{\frac{P_{1}\left(M_{2}^{2}-1\right)}{P_{2} M_{2}^{2}\left(M_{1}^{2}-1\right)}}$, then $\left(w_{1}^{*}, w_{2}^{*}\right)=\left(\sqrt{\frac{3 P_{2} M_{2}^{2}}{2\left(M_{2}^{2}-1\right)}\left|\frac{\left|h_{2}\right|}{\left|h_{1}\right|}\right|}, \sqrt{\frac{3 P_{2}}{2\left(M_{2}^{2}-1\right)}}\right)$,
$d_{\text {noma }}=\sqrt{\frac{3 P_{2}}{2\left(M_{2}^{2}-1\right)}}\left|h_{2}\right| ;$

- If $\sqrt{\frac{P_{1}\left(M_{2}^{2}-1\right)}{P_{2} M_{2}^{2}\left(M_{1}^{2}-1\right)}}<\frac{\left|h_{2}\right|}{\left|h_{1}\right|} \leq \sqrt{\frac{P_{1} M_{1}^{2}\left(M_{2}^{2}-1\right)}{P_{2} M_{2}^{2}\left(M_{1}^{2}-1\right)}}$, then
$\left(w_{1}^{*}, w_{2}^{*}\right)=\left(\sqrt{\frac{3 P_{1}}{2\left(M_{1}^{2}-1\right)}}, \sqrt{\left.\frac{3 P_{1}}{2 M_{2}^{2}\left(M_{1}^{2}-1\right)}\left|h_{1}\right| h_{2} \right\rvert\,}\right), d_{\text {noma }}=\sqrt{\frac{3 P_{1}}{2 M_{2}^{2}\left(M_{1}^{2}-1\right)}}\left|h_{1}\right| ;$
- If $\sqrt{\frac{P_{1} M_{1}^{2}\left(M_{2}^{2}-1\right)}{P_{2} M_{2}^{2}\left(M_{1}^{2}-1\right)}}<\frac{\left|h_{2}\right|}{\left|h_{1}\right|} \leq \sqrt{\frac{P_{1} M_{1}^{2}\left(M_{2}^{2}-1\right)}{P_{2}\left(M_{1}^{2}-1\right)}}$, then
$\left(w_{1}^{*}, w_{2}^{*}\right)=\left(\sqrt{\frac{3 P_{2}}{2 M_{1}^{2}\left(M_{2}^{2}-1\right)}\left|h_{2}\right|}, \sqrt{\frac{3 P_{2}}{2\left(M_{2}^{2}-1\right)}}\right), d_{\text {noma }}=\sqrt{\frac{3 P_{2}}{2 M_{1}^{2}\left(M_{2}^{2}-1\right)}}\left|h_{2}\right| ;$
$>$ If $\sqrt{\frac{P_{1} M_{1}^{2}\left(M_{2}^{2}-1\right)}{P_{2}\left(M_{1}^{2}-1\right)}}<\frac{\left|h_{2}\right|}{\left|h_{1}\right|}$, then $\left(w_{1}^{*}, w_{2}^{*}\right)=\left(\sqrt{\frac{3 P_{1}}{2\left(M_{1}^{2}-1\right)}}, \sqrt{\frac{3 P_{1} M_{1}^{2}}{2\left(M_{1}^{2}-1\right)}\left|h_{1}\right|}\left|h_{2}\right|\right.$,
$d_{\text {noma }}=\sqrt{\frac{3 P_{1}}{2\left(M_{1}^{2}-1\right)}}\left|h_{1}\right|$.
Corollary: The sum-constellation at the receiver is a standard $M_{1}^{2} M_{2}^{2}$-QAM constellation with the minimum Euclidean distance $\boldsymbol{d}_{\text {noma }}$, where a quantization receiver can be employed to implement ML detection [R1].
Example: If $\frac{\left|h_{2}\right|}{\left|h_{1}\right|} \leq \sqrt{\frac{P_{1}\left(M_{2}^{2}-1\right)}{P_{2} M_{2}^{2}\left(M_{1}^{2}-1\right)}}$, then $\left|h_{1}\right| w_{1}^{*} s_{1}+\left|h_{2}\right| w_{2}^{*} s_{2}=$
$\sqrt{\frac{3 P_{2} M_{2}^{2}}{2\left(M_{2}^{2}-1\right)}\left|h_{2}\right|}\left|h_{1}\right| h_{1}+\sqrt{\frac{3 P_{2}}{2\left(M_{2}^{2}-1\right)}}\left|h_{2}\right| s_{2}=\sqrt{\frac{3 P_{2}}{2\left(M_{2}^{2}-1\right)}}\left|h_{2}\right|\left(M_{2} s_{1}+s_{2}\right)$. Recall that $s_{1} \in\{ \pm(2 k-1)\}_{k=1}^{M_{1} / 2}, s_{2} \in\{ \pm(2 k-1)\}_{k=1}^{M_{2} / 2}$, and therefore $M_{2} s_{1}+s_{2} \in\{ \pm(2 k-1)\}_{k=1}^{M_{1} \bar{M}_{2} / 2}$

6. Numerical Results

Figure: Comparison between the Proposed-NOMA, CR-NOMA, TDMA and FDMA methods in Rayleigh fading with variances of the channel coefficients of δ_{1}^{2} and δ_{2}^{2} of User- 1 and User-2, Rayleigh fading with variances of the channel coeficients of δ_{1}^{2}.
respectively: (a) $\left(\delta_{1}^{2}, \delta_{2}^{2}\right)=(1,1)$, (b) $\left(\delta_{1}^{2}, \delta_{2}^{2}\right)=(1,1 / 64)$.

- Each user adopts 64-QAM for the proposed NOMA design and 64-PSK is used by each user in CR-NOMA. Meanwhile, for TDMA and FDMA methods, each user uses 4096-QAM
- From Fig.(1a) and Fig. (1b), the proposed NOMA design outperforms all the benchmark designs in moderate and high SNR regimes. The FDMA method has a better error performance than the TDMA scheme as expected. The CR-NOMA has the highest BER since the PSK constellation has a smaller Euclidean distance under the same power constraint compared with QAM constellation.
- The BER performance gap between the proposed NOMA and OMA methods are enlarged with "near-far" channel realizations.

7. Reference

[R1] Z. Dong, Y. Y. Zhang, J. K. Zhang and X. C. Gao, "Quadrature Amplitude Modulation

