Defending DNN Adversarial Attacks with Pruning and Logits Augmentation

Siyue Wang^{1*}, Xiao Wang^{2*}, Shaokai Ye³, Pu Zhao¹& Xue Lin¹ 1. Department of ECE, Northeastern University 2. Department of Computer Science, Boston university 3. Department of EECS, Syracuse University * Equal Contribution

GlobalSip 2018

Outline

- Background
- Introduction to Adversarial Attacks
- Related work
- Our defense techniques
- □ Pruning + Logits Augmentation
- Conclusion

Background

- Deep neural networks (DNNs) have been shown to be powerful models and perform extremely well on many complicated artificial intelligent tasks.
 Phone X®
- Some are security critical like facial recognition and self-driving cars.

Display Face ID A12 Bionic Cameras Only iPhone Tech Spec

Adaptive recognition. Face ID us

- Krizhevsky, A., Sutskever, I. and Hinton, G. E.. "ImageNet Classification with Deep Convolutional Neural Networks". NIPS 2012.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.
- Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.
- https://selfdrivingcars.mit.edu/
- https://www.apple.com/iphone-xs/face-id/

Adversarial Attacks

- > DNN models are vulnerable to adversarial attacks.
- Intentionally added imperceptible perturbations to DNN inputs can easily mislead the DNNs with extremely high confidence.

- Scoolfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," ICLR, 2015.
- N. Papernot, P. McDaniel, X. Wu, et al., "Distillation as a defense to adversarial perturbations against deep neural networks," IEEE Symposium on Security and Privacy (SP), 2016.

Problem Formulation

Suppose: a neural network has the model $F(\mathbf{x}) = \mathbf{y}$ and is an *m*-class classifier; the neural network classifies input \mathbf{x} according to the maximum probability, i.e., $C(\mathbf{x}) = \arg \max_{i} y_i$.

The initial problem of generating adversarial examples:

 $\min_{\mathbf{x}} \quad \mathscr{D}(\mathbf{x} - \mathbf{x_0})$ s.t. $C(\mathbf{x}) = t$ $\mathbf{x} \in [0, 1]^n$

 x_0 is the original legal input; x is the adversarial example; $\mathscr{D}(x-x_0)$ is a measure of the distortion $\delta = x - x_0$; t is the target label to mislead the DNN.

 L_p norms are the most commonly used measures in the literature, defined as:

$$\| \mathbf{x} - \mathbf{x_0} \|_p = \left(\sum_{i=1}^n |\mathbf{x}_i - \mathbf{x}_{0i}|^p \right)^{\frac{1}{p}}$$

 L_0 measures the number of mismatched elements; L_1 measures the sum of the absolute values of the differences; L_2 measures the standard Euclidean distance; L_{∞} measures the maximum difference between x and x_0 .

Adversarial attacks use L_0 , L_1 , L_2 , and L_∞ norms to measure the distortions are namely L_0 , L_1 , L_2 , and L_∞ attacks, respectively.

Fast Gradient Sign Method (FGSM)

Adversarial examples are generated directly as

$$\mathbf{x} = \mathbf{x}_0 - \epsilon \cdot \operatorname{sign}(\nabla(\operatorname{loss}_{F,t}(\mathbf{x}_0)))$$

confidence

 ϵ is the magnitude of the added distortion.

Designed to be fast, not optimal

confidence

confidence

S. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," ICLR, 2015.

Basic Iterative Method (BIM)

- BIM gives a further modify of FGSM. Instead of taking a single step , BIM takes multiple steps a. Given an initial setting: $x'_0 = x$
- for each iteration, it calculates:

 $x'_{i} = x'_{i-1} - clip_{\epsilon}(\alpha sign(\nabla(loss_{F,y}(x'_{i-1})))))$

Notice that here BIM clips pixel values of intermediate results after each step to ensure that they are in an epsilon-bounded neighbourhood of the original image.

A. Kurakin, I. Goodfellow, and S. Bengio, "Adversarial examples in the physical world,"

Carlini and Wagner Attack (CW)

Solve an optimization problem:

minimize $D(\mathbf{x} - \mathbf{x_0}) + c \cdot f(x)$ subject to $x \in [0, 1]^n$

c > 0 is a constant to be chosen;objective function *f* has the following form:

 $f(x) = \max(\max\{Z(x)_i : i \neq t\} - Z(x)_t, -\kappa)$

 κ is a parameter that controls the confidence in attacks; Z(x) the input to the softmax, i.e., logits.

- L_0, L_2, and L_infinity attacks
- The strongest iterative attack in the literature

Original Adversarial

Original Adversarial

Motivations: Network Pruning

- DNN pruning method reduces the number of weights while preserving the accuracy of the compressed DNN models.
- We prune 10% nonzero weights for fully connected layers and 5% nonzero weights for convolutional layers.
- The network model can be compressed by 7 times after pruning.

Logits ugmentation

- ► To further improve the robustness of DNNs under adversarial attacks, we propose to use the logits augmentation on top of the pruning method.
- Inspired by the gradient inhibition method , which changes the weights in the last few layers as: $w = w + \tau * sign(w).$
- In our logits augmentation, we modify the weights in the last fully-connected layer by

 $w=\tau\times w$

 Q. Liu, T. Liu, Z. Liu, Y. Wang, Y. Jin, and W. Wen, "Security analysis and enhancement of model compressed deep learning systems under adversarial attacks," ASP-DAC, 2018.

Defense Models

- ▶ MO and CO: unprotected neural network models that achieve near state-ofthe-art accuracy, i.e., 99.4% and 80%, respectively, on MNIST and CIFAR-10.
- ▶ M1 and C1: defense level one exploits only the pruning method.
- M2 and C2: defense level two exploits both pruning and logits augmentation as defense.

Experimental Results

Results using Mo, M1 and M2 on MNIST

TABLE I: Adversarial attack successful rate (and distortion) of the unprotected model M0, Level One model M1, and Level Two model M2 under four attacks (untargeted FGSM, targeted FGSM, targeted BIM, and C&W) using MNIST dataset.

Attack	Untargeted			Targeted			Targeted			C&W
Method	FGSM			FGSM			BIM			
Parameters	$\varepsilon = 0.1$	$\varepsilon = 0.15$	$\varepsilon = 0.25$	$\varepsilon = 0.1$	$\varepsilon = 0.15$	$\varepsilon = 0.25$	$\varepsilon = 0.1$	$\varepsilon = 0.15$	$\varepsilon = 0.25$	iter = 100
M0	9.0%	17.0%	45.6%	1.97%	4.52%	12.0%	3.89%	14.81%	39.64%	99.6%
	(2.19)	(3.28)	(5.45)	(2.17)	(3.25)	(5.39)	(2.11)	(3.11)	(5.28)	(2.03)
M1	7.4%	8.7%	20.2%	1.17%	1.68%	4.04%	3.14%	9.9%	31.26%	96.97%
	(2.16)	(3.25)	(5.38)	(2.15)	(3.22)	(5.35)	(2.14)	(3.13)	(5.07)	(2.28)
M2	1.1%	1.1%	1.1%	1.04%	1.5%	3.87%	2.71%	7.9%	21.12%	95.93%
	(2.28)	(3.41)	(5.65)	(2.15)	(3.22)	(5.35)	(2.15)	(3.1)	(5.1)	(2.5)

The experiment is evaluated on 1000 source samples from MNIST. We set the search step for line search in C&W as 10.

Experimental Results

Results using Mo, M1 and M2 on CIFAR-10

TABLE II: Adversarial attack successful rates (and distortion) of the unprotected model C0, Level One model C1, and Level Two model C2 under four attacks using CIFAR-10 dataset.

Attack	Untargeted			Targeted			Targeted			C&W
Method	FGSM			FGSM			BIM			Caw
Parameters	ε=	$\varepsilon =$	iter =							
	0.1	0.15	0.25	0.1	0.15	0.25	0.1	0.15	0.25	100
C0	84.6%	86.3%	87.1%	17.71%	14.78%	11.49%	63.59%	65.83%	65.73%	99.54%
	(5.43)	(8.05)	(13.0)	(5.43)	(8.05)	(13.0)	(4.48)	(6.66)	(10.8)	(2.06)
C1	70.3%	75.3%	80.9%	11.2%	10.5%	10.1%	25.3%	23.8%	19.3%	85.0%
	(5.43)	(8.05)	(13.0)	(5.42)	(8.05)	(13.03)	(4.47)	(6.64)	(10.8)	(3.55)
C2	24.6%	24.5%	25%	11.12%	11.25%	11.16%	43.41%	44.9%	41.2%	83.9%
	(1.42)	(2.11)	(3.41)	(5.33)	(7.91)	(12.8)	(4.43)	(6.5)	(10.7)	(4.31)

The experiment is evaluated on 1000 source samples from CIFAR-10. We set the search step for line search in C&W as 10.

Conclusion

- ▶ Enhance the robustness of DNNs by using pruning method and logits augmentation
- ▶ We achieve DNN model compression by **7** times while maintaining the test accuracy
- Our method can effectively defend against both targeted and untargeted FGSM and BIM attacks under grey-box attack assumption

Thank you!