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Abstract
• Objective: Improve the synthesis quality of voice

conversion in a sparse, anchor-based representation of
speech (SABR) [1]

• Motivation: Just using anchors in voice conversion results
in low-quality synthesis due to a large source residual that
was not used in voice conversion

• Problem: The source residual needs to be considered, but
may contain speaker identity and needs to be converted
to the target speaker

• Solution: Use source and target anchors to learn warping
functions to warp the source residual to the target
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Sparse Anchor-Based Representation (SABR)
SABR represents an utterance 𝑋 using phonetic anchors 𝐴
and a weight vector 𝑊. A residual term 𝑅 accounts for the 
error in the SABR approximation:

𝑋 = 𝐴𝑊 + 𝑅

We compute 𝑊 using Lasso regression:
min
𝑊

𝑋 − 𝐴𝑆𝑊
2 + 𝜆 𝑊 1 𝑠. 𝑡.𝑊 ∈ [0,1]

We use 𝑊 to estimate the target envelope using target 
anchors 𝐴𝑇:

𝑋𝑇 ≅ 𝐴𝑇𝑊

This approximation needs to account for the residual. We 
cannot just add 𝑅 from eq. 1. Therefore, we use the anchors 
to learn a warping function:

𝑋𝑇 ≅ 𝐴𝑇𝑊 + 𝐹𝑅(𝑅)

Sparse Anchor-Based Representation (SABR)
SABR represents an utterance 𝑋 using phonetic anchors 𝐴
and a weight vector 𝑊. A residual term 𝑅 accounts for the 
error in the SABR approximation:

𝑋 = 𝐴𝑊 + 𝑅

We compute 𝑊 using Lasso regression:
min
𝑊

𝑋 − 𝐴𝑆𝑊
2 + 𝜆 𝑊 1 𝑠. 𝑡.𝑊 ∈ [0,1]

We use 𝑊 to estimate the target envelope using target 
anchors 𝐴𝑇:

𝑋𝑇 ≅ 𝐴𝑇𝑊

This approximation needs to account for the residual. We 
cannot just add 𝑅 from eq. 1. Therefore, we use the anchors 
to learn a warping function:

𝑋𝑇 ≅ 𝐴𝑇𝑊 + 𝐹𝑅(𝑅)

Residual Warping

• Using the source and target anchors, we estimate a transform 

𝑇𝑘 for each anchor 𝑘 minimizing 𝐴𝑠
𝑘 − 𝑇𝑘𝐴𝑇

𝑘
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• Vocal Tract Length Normalization (VTLN) functions can be 
represented as linear transforms of MFCCs [2]

• For VTLN, we use a piecewise linear warping function with 
parameters 𝜔𝑘 and 𝑝𝑘 (inflection frequency and slope)

• For each frame, we use the weights to learn a warping 
function from the learned anchor warps

• Using the weights 𝑊 and transforms 𝑇, the full voice 
conversion method including residual warping becomes

𝑋𝑖 = 𝐴𝑇𝑊𝑖 + 

∀𝑘

𝑊𝑖,𝑘𝑇𝑘(𝜔𝑘 , 𝑝𝑘) 𝑅𝑖
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Conclusions
• Keyframe estimation: the modified SABR algorithm is 

capable of finding almost all keyframes with an average 
error of 15 ms.

• EMA:  Gestural scores produced EMA trajectories weakly 
correlated with the source utterance.

• Future work:
1) Incorporating keyframes into a sparse speech 
synthesis method could be a way to improve synthesis 
quality with smaller models.
2) Improve EMA accuracy using a data-driven shape 
optimization method.
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Experiments
We compared three different systems: SABR (eq. 3), 
SABR+Res (eq. 5), and a 40-mixture GMM with diagonal 
covariances. Models were trained on the same utterances.
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Conclusions
• Residual warping improved rated acoustic quality though 

VC error increased
• The increased VC error did not affect the ability for a 

listener to perceive the identity of the speaker
Future work:
1. Determine ideal anchor sets, as some phoneme classes 

may be ill-suited for single-vector anchors (e.g. stops).
2. Add temporal smoothness constraints in the objective 

function via the Fused Lasso [3]
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Corpus and Parameters

• Corpus: ARCTIC speech corpus,
speakers BDL, CLB, RMS, and SLT

• Anchor selection: one anchor
for each phoneme by computing
the centroid of MFCCs from
frames with that label

• Anchor features: 𝑀𝐹𝐶𝐶1−24
(excluding energy)

• Sparsity penalty: 𝜆 = 0.025

• Warp parameters: Inflection frequency 𝑤𝑘 ∈ 0.4 0.8
Slope parameter 𝑝𝑘 ∈ [0.8, 1.2]
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Objective VC 
• Compared against number

of training utterances
• Residual adds ~0.1 dB error 

to est. target spectrum

Cepstral variance
• Global variance of MFCCs 

as measure of quality
• SABR+Res approached

source variance

XAB Identity Test
• SABR+Res performed at 

least as well as GMM
(𝑝 = 0.35)

• F-F performance low; 
CLB/SLT are very similar

Mean Opinion Score
• 15 training utterances
• Warped residual 

significantly increased MOS 
(SABR: 2.2; GMM: 2.5; 
SABR+Res: 3.6; 𝑝 > 0.01)
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