FAST DISTRIBUTED SUBSPACE PROJECTION VIA GRAPH FILTERS {thilina.weerasinghe, daniel.romero, cesar.asensio, baltasar.beferull@uia.no

Department of ICT, University of Agder, Norway

Contributions

Result: Subspace projection

- in a decentralized fashion
- in a finite number of iterations.

Novelty: Based on Graph filters

- finds valid shift matrix when it exists and
- is the one that approximately minimizes order
- \rightarrow number of communications between nodes.

Subspace projection example

Problem formulation

- A graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is considered
- $\mathcal{V} = \{v_1, \ldots, v_N\}$ represent N sensors
- edge $(v_n, v_{n'})$ iff sensors communicate.
- self loops $(v_n, v_n) \in \mathcal{E}, n = 1, ..., N$ included.

A is the adjacency matrix: $-(\mathbf{A})_{n,n'} = 1 \text{ if } (v_n, v_{n'}) \in \mathcal{E}$ - $(\mathbf{A})_{n,n'} = 0$ otherwise.

Goal: estimate signal vector $\boldsymbol{x} \in \mathbb{R}^N$ from observation vector $\mathbf{z} = [z_1, \dots, z_N]^T = \mathbf{x} + \boldsymbol{\zeta}$ - $z_n \in \mathbb{R}$ denotes observation of node $v_n \in \mathcal{V}$ - $\zeta \in \mathbb{R}^N$ stands for additive noise.

Knowledge: \boldsymbol{x} is known to lie in the subspace spanned by $\mathbf{U}_{\parallel} \in \mathbb{R}^{N \times r}$, where r < N; $\rightarrow \boldsymbol{x} = \mathbf{U}_{\parallel} \boldsymbol{\alpha}$ for some $\boldsymbol{\alpha} \in \mathbb{R}^r$.

Problem: find $\hat{\boldsymbol{x}} \triangleq [\hat{\boldsymbol{x}}_1, \dots, \hat{\boldsymbol{x}}_N]^T = \mathbf{U}_{\parallel} \mathbf{U}_{\parallel}^T \mathbf{z} \triangleq \mathbf{P} \mathbf{z}$ given z and U_{\parallel} in a decentralized fashion.

Motivation

cast as **subspace projection**.

Existing approaches:

(i) Only converges asymptotically to desired result or

Proposed methodology

First step: characterize set of feasible shift matrices

$$\mathcal{S} = \left\{ \mathbf{S} \in \mathbb{R}^{N \times N} : \mathbf{S} = \mathbf{S}^T, \ (\mathbf{S})_{n,n'} = 0 \right\}$$
 is

$$\exists \mathbf{c} = [c_0, ..., c_{N-1}]^T$$
 satisfying $\mathbf{U}_{\parallel} \mathbf{U}_{\parallel}^T = c$

Key point 1: Matrices in S can be expressed as $\mathbf{S} = \mathbf{S}_{\parallel} + \mathbf{S}_{\perp}$

Second step: Ensure *L* is nearly minimal

Numerical Results Least squares estimation, denoising, weighted consensus, and distributed detection, can be --- Fast Shift Low complex Shift — Fastest Asymptotic method [1] Robustness, scalability, and energy consumption motivate **decentralized algorithms**. <u>З</u>2 (ii) Do not provide shift matrix and do not consider number of steps to converge. Communication step (k) --- Fast Shift ---- Low complex Shift **Previous work:** have shown that a graph filter allows decentralized implementation. — Fastest Asymptotic method [1] <u>(х</u> Ш **Problem reduced to:** find a graph filter $\mathbf{H} := c_0 \mathbf{I} + \sum_{l=1}^{L-1} c_l \mathbf{S}^l$ such that $\mathbf{Pz} = \mathbf{Hz}, \forall \mathbf{z}$. **Our solution:** find shift matrix **S** and filter coefficients c_l that ensure L nearly minimal. Communication step (k) if $(v_n, v_{n'}) \notin \mathcal{E}$, **Setting:** Monte Carlo simulation. $c_0 \mathbf{I} + \sum^l c_l \mathbf{S}^l \big\}$ - Topology \mathcal{E} and matrix \mathbf{U}_{\parallel} random. -N = 25, r = [5, 10].What is compared: error $||\mathbf{y} - \mathbf{P}\mathbf{z}||_2$ - exact and approximate solutions vs - \mathbf{S}_{\perp} is a symmetric matrix satisfying $\mathbf{S}_{\perp}^{T}\mathbf{U}_{\parallel} = \mathbf{0}$ - fastest asymptotic method [1]. - $\mathbf{S}_{\parallel} = \mathbf{U}_{\parallel} \mathbf{F} \mathbf{U}_{\parallel}^T$ for some symmetric $\mathbf{F} \in \mathbb{R}^{r \times r}$. **Error definition:** - For two objectives proposed $E(k) = \mathbb{E}_{\mathbf{A},\mathbf{z}} || \sum c_l^{(k)} \mathbf{S}^l \mathbf{z} - \mathbf{P} \mathbf{z} ||_2$ - Requirement: Given a minimal *L*, filter $Hz = Pz \forall z$ must exist. - For approach in [1] - Initial result: Minimal L equals the number of different eigenvalues of F plus S_{\perp} . $E(k) = \mathbb{E}_{\mathbf{A},\mathbf{z}} ||\mathbf{W}^k \mathbf{z} - \mathbf{P}\mathbf{z}||_2$ - Difficulty: finding F and S_{\perp} minimizing number of different eigenvalues is non-convex. **Conclusion:** Proposed shifts converge to desired projection in nearly minimal number of steps, outperforming [1]. Key point 2: convex surrogate for objective. Similar to ℓ_1 -norm replacing zero norm. [1] S. Barbarossa et al. Distributed signal subspace projection algorithms with maximum convergence rate for sensor networks with topological constraints. ICASSP 2009. $\mathbf{S}_{\parallel} = \mathbf{U}_{\parallel} \mathbf{F} \mathbf{U}_{\parallel}^T, \quad \mathbf{S}_{\perp}^T \mathbf{U}_{\parallel} = \mathbf{0},$ Funding

Solution: convex problem:

$$\begin{array}{ll} \underset{\mathbf{F},\mathbf{S},\mathbf{S}_{\parallel},\mathbf{S}_{\perp}}{\text{minimize}} & ||\mathbf{F}\otimes\mathbf{I}-\mathbf{I}\otimes\mathbf{F}||_{\star}+||\mathbf{S}_{\perp}\otimes\mathbf{I}-\mathbf{I}\otimes\mathbf{S}_{\perp}||_{\star}\\ \text{s. t.} & (\mathbf{S})_{n,n'}=0 \text{ if } (v_n,v_{n'}) \notin \mathcal{E},n,n'=1,...,\\ & \mathbf{S}=\mathbf{S}_{\parallel}+\mathbf{S}_{\perp}, \quad \mathbf{S}_{\perp}=\mathbf{S}_{\perp}^{\mathrm{T}}, \quad \mathbf{S}_{\parallel}=\mathbf{S}_{\parallel}^{\mathrm{T}}, \quad \mathbf{S}\\ & \operatorname{tr}(\mathbf{F})=r, \quad \operatorname{tr}(\mathbf{S}_{\perp})\leq N-r-\epsilon \end{array}$$

 $\epsilon > 0$ is small positive constant and last two constraints needed to avoid trivial solutions.

The work in this paper was supported by the PETROMAKS Smart-Rig grant 244205/E30, the SFI Offshore Mechatronics grant 237896/O30, and the TOPPFORSK WISECART grant 250910/F20.

