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What is Convolutive Sparse
BCA?
• BCA: Extended ICA for Bounded Signals⇒ Allows Separation of

Both Independent and Dependent Signals [5]

• SBCA: Extension of BCA [7] for Sparse Bounded Signals

•Convolutive SBCA: Natural extension of SBCA [2] for convolu-
tive mixtures

Instantaneous BSS:
• Instantaneous Sparse BCA Setup previously introduced in [2]:

• s1, s2, . . . , sp: Source Signals

• y1, y2, . . . , yq: Mixture Signals

•H: q × p Mixing System, where
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•W: p× q Separator System

• z1, z2, . . . , zp: Separator Outputs

Figure 1: Geometric objects for the proposed Sparse BCA framework

Instantaneous Sparse BCA criterion given in [2]:

maximize volume(Principal Hyper-ellipsoid)
size(Bounding l1-Norm-Ball)

The resulting instantaneous sparse BCA objective:

J(W) =

√
det(R̂z)

(maxn∈{1,...,L} ‖z(n)‖1)p

Convolutive BSS:
• s1, s2, . . . , sp: Source Signals
• y1, y2, . . . , yq: Mixture Signals (q ≥ p)

• H̃: q × p Mixing System of order K − 1, where

H̃ = [H(0),H(1), . . . ,H(K − 1)]

and 
y1(n)
y2(n)

...
yq(n)


︸ ︷︷ ︸

y(n)

= H̃


s(n)

s(n− 1)
...

s(n−K + 1)


︸ ︷︷ ︸

s̃(n)

• W̃: p× q Separator System of order M − 1, where

W̃ = [W(0),W(1), . . . ,W(M − 1)]

and 
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• z1, z2, . . . , zp: Separator Outputs

• G̃: Overall System of order P − 1, where

G(k) =

P−1∑
l=0

W(l)H(k − l), k = 0, . . . , P − 1.

•Basic Assumption: BCA’s domain separability assump-
tion [5]

• The goal is to obtain a separator matrix W̃ such that the overall
mapping

G̃ = W̃H̃

is equal to

G(z) =


α1z
−d1 0 . . . 0

0 α2z
−d2 . . . 0

... ... . . . ...
0 0 . . . αpz

−dp

P (1)

• αk, dk : Non-zero real scalings and non-negative integer delays
•P : Permutation matrix

The modified objective function of [2] for the separation
of convolutive sparse mixtures:

J(W̃) =

√
det(R̂z̃N)

(maxn∈{N,...,L1} ‖z̃N(n)‖1)Np

Outline of the Proof:
• Rewrite the objective function, in terms of the argument G(k) =
P−1∑
l=0

W(l)H(k − l) for k = 0, . . . , P − 1, and the operator ΓN such

that ΓN (G̃) is a block Toeplitz matrix of dimension (Np)×(N+P−
1)p whose first block row is [G(0),G(1), . . . ,G(P − 1),0, . . . ,0]
and first block column is [G(0),0, . . . ,0]T .

J(G̃) =

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

(maxn∈{N,...,L1} ‖ΓN (G̃)s̃L3
‖1)Np

. (2)

where L3 = N + P − 1.
•We can write the following inequalities:

J(G̃) ≤

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

(‖
[
‖ΓN (G̃)1,:‖1 · · · ‖ΓN (G̃)Np,:‖1

]
‖1/(Np))Np

(3)

≤

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

‖ΓN (G̃)1,:‖1‖ΓN (G̃)2,:‖1 · · · ‖ΓN (G̃)Np,:‖1
(4)

≤

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

‖ΓN (G̃)1,:‖2‖ΓN (G̃)2,:‖2 · · · ‖ΓN (G̃)Np,:‖2
(5)

•Using Schur complement and Hadamard inequality for the nomina-
tor of (2), we obtain the inequality√

det(R̂z̃N) ≤
Np∏
m=1

‖ ΓN (G̃)m,: ‖22
(P−1)p∏
n=1

‖ Yn,: ‖22 det(R̂s̃L3
) (6)

• The resulting inequality for the objective:

J(G̃) ≤
(P−1)p∏
n=1

‖ Yn,: ‖2 det(R̂s̃L3
)1/2 (7)

•Result: The upper bound for the objective J(G̃) on the
right hand-side of (7) is achieved if and only if G(z) =

diag
(
α1z
−d1, α2z

−d2, . . . , αpz−dp
)
P.

Iterative Algorithm for SBCA:
•We can write the iterative update equation using Clarke subdifferen-

tial [3] J(W̃) as

W̃(t+1) = W̃(t) + σ(t)(

N−1∑
k=0

X
(t)
kp+1:(k+1)p,kq+1:(k+M)q

−Np

N−1∑
k=0

okp+1:(k+1)p,kq+1:(k+M)q

max
n∈{N,...,L1}

‖z̃N(n)‖1
)

where o = sign(z̃N (l(t)))ỹN+M−1(l(t))
T

and

X =
(

ΓN (W̃)R̂ỹN+M−1ΓN (W̃)T
)−1

ΓN (W̃)R̂ỹN+M−1.

Experimental Results:
•Mixing: The convolutive mixing system is i.i.d. Gaussian with order 3, and the

separator is of order 4.

• Comparison: Castella’s [4], Koldovský [8], Douglas’ [6] algorithms.

First experiment: Source signals are synthetic sparse signal set given in the web-
site of RIKEN Brain Science Institute [1].

Figure 2: a)-
Output SDR vs.
mixing order
for 5 sources
and 10 mixture
channels under
SNR=20 dB.
b)- Output SDR
vs. number of
mixture channels
for 5 sources
under SNR=20
dB.

Second experiment: Source signals are synthetic, sparse and dependent signals
generated by using Copula-T distribution.

Figure 3:
a)- Copula-T
distributed
random sparse
sequences. b)-
Output SDR vs.
correlation for
3 sources under
SNR=20 dB.
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