No-reference Weighting Factor Selection for Bimodal Tomography

Yan Guo

Delft University of Technology

Sample $(-75)^{\circ}$

Sample @ 0°

Sample (200) +75°

Sample $(= 75^{\circ})$

Bimodal tomography incorporates EDS data into STEM projections

Bimodal tomography incorporates EDS data into STEM projections

Bimodal
$$= \min \alpha^2$$
 STEM² $+(1-\alpha)^2$ EDS²

- Weighting factor $\alpha \in (0,1)$
- Number of iterations ${\mathcal N}$

Weighting factor α influences the reconstruction quality

xy-slices at z = 150 with 100 iterations adopted for bimodal tomography. The size of reconstruction volume is $300 \times 300 \times 300$.

Weighting factor α influences the reconstruction quality

xy-slices at z = 150 with 100 iterations adopted for bimodal tomography. The size of reconstruction volume is $300 \times 300 \times 300$.

Weighting factor α influences the reconstruction quality

xy-slices at z = 150 with 100 iterations adopted for bimodal tomography. The size of reconstruction volume is $300 \times 300 \times 300$.

Currently choosing the optimal α needs the ground truth

Z. Zhong et al., "A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM," *Ultramicroscopy*, vol. 174, pp. 35-45, 2017.

Currently choosing the optimal α needs the ground truth

Z. Zhong et al., "A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM," *Ultramicroscopy*, vol. 174, pp. 35-45, 2017.

Since this is infeasible for an industrial application ...

Automatically find weighting factor without the ground truth

Image quality metrics

- 1) Cross-atomic contamination metric Q_{CC}
- 2) Inhomogeneity metrics $Q_{IH,1}$ and $Q_{IH,2}$
- 3) Noise metrics $Q_{N,1}$ and $Q_{N,2}$

Reconstruction

Reconstruction

Inhomogeneity metrics $Q_{IH,1}$ and $Q_{IH,2}$

- Pearson coefficient (PC)
- Overlap coefficient (OC)

Inhomogeneity metrics $Q_{IH,1}$ and $Q_{IH,2}$

 $Q_{\rm IH,1} = 1 - PC$ $Q_{\rm IH,2} = 1 - OC$

• $Q_{\rm N,1}$ analyzes the amount of streaks using Gabor filter banks

B. Zuo et al., "A no-reference ringing metrics for images deconvolution," in *Proceedings of ICWAPR*, vol. 1, pp. 96-101, 2008.

Q_{N,1} analyzes the amount of streaks using Gabor filter banks

B. Zuo et al., "A no-reference ringing metrics for images deconvolution," in *Proceedings of ICWAPR*, vol. 1, pp. 96-101, 2008.

• $Q_{\rm N,1}$ analyzes the amount of streaks using Gabor filter banks

B. Zuo et al., "A no-reference ringing metrics for images deconvolution," in *Proceedings of ICWAPR*, vol. 1, pp. 96-101, 2008.

• $Q_{\rm N,1}$ analyzes the amount of streaks using Gabor filter banks

• $Q_{\rm N,2}$ measures the strength of line-like structures by orientation selective filter

M. van Ginkel, *Image analysis using orientation space based on steerable filters*, Ph.D. thesis, Delft University of Technology, The Netherlands, 2002.

Metric values of cross-atomic contamination, inhomogeneity and noise versus weighting factor α for Au with 100 iterations adopted for bimodal tomography.

Final quality metric is • $Q = \underline{Q_{\text{CC}}} \times \underline{Q_{\text{IH},1}} \times \underline{Q_{\text{IH},2}} \times \underline{Q_{\text{N},1}} \times \underline{Q_{\text{N},2}}$ **Cross-atomic** Inhomogeneity Noise contamination <u>×10⁻³</u> MSE Quality metric Q 3.5 0.028 $\mathcal{N} = 50$ $\mathcal{N} = 50$ N = 100N = 1000.026 3 - N = 200-N = 2000.024 2.5 0.022 2 1.5 0.02 0.018 1 0.016 0.5 0.014 0 0.4 0.6 0.4 0.2 0.8 0.2 0.6 0.8 α α

Quality metric Qversus weighting factor α for Au at slice 150 with 100 iterations

Weighting factor increases with number of iterations

Weighting factor is inconsistent for different slices

Conclusion

 We propose a quality metric to select the weighting factor for bimodal tomography without a ground truth

- Our algorithm can achieve a MSE accuracy of ± 0.03
- We reduce the total computational time to 10% by sparse computation of α

Thank you! Questions?

Yan Guo and Bernd Rieger <u>{y.guo-3, b.rieger}@tudelft.nl</u> Department of Imaging Physics Delft University of Technology

