Source-Aware Context Network for Single-Channel Multi-speaker Speech Separation Zeng-Xi Li¹, Yan Song¹, Li-Rong Dai¹, Ian McLoughlin² ¹NELSLIP, University of Science and Technology of China, China ²School of Computing, University of Kent, UK

Abstract

- Conventional deep learning based approaches may encounter difficulties in speaker-independent single-channel multi-speaker speech separation.
 - Partly due to the *label permutation problem*.
- We propose a novel source-aware context network: Explicitly inputs speech sources as well as mixture signal.
 - The permutation order of outputs can be easily determined without any additional post-processing.
- A Multi-time-step Prediction Training (MPT) strategy is proposed to address the mismatch between training and inference stages.

Label Permutation Problem

• Conventional deep learning based methods commonly cast multi-speaker separation as a multiclass regression problem. In two-speaker situation:

 $\hat{\mathbf{X}}_{1,t}, \hat{\mathbf{X}}_{2,t} = H(\mathbf{y}_{t+F}, \cdots, \mathbf{y}_{t-P})$

• During training, the error between targets $[\mathbf{X}_{1,t}, \mathbf{X}_{2,t}]$ and outputs $[\hat{\mathbf{x}}_{1,t}, \hat{\mathbf{x}}_{2,t}]$ needs to be computed for backpropagation. However, it is unknown in advance whether the outputs order is $[\hat{\mathbf{x}}_{1,t}, \hat{\mathbf{x}}_{2,t}]$ or $[\hat{\mathbf{x}}_{2,t}, \hat{\mathbf{x}}_{1,t}]$, given only input **y**

Source-Aware Context Network

• Our proposed model simultaneously and recursively estimates two sources by modeling the conditional distribution of current sources' spectra, given past sources' spectra and mixture spectra:

• An overview of the proposed network G hidden block l FC^r_v FC_{uw}^{r} GAU GAU FC, FC **→**C →C)∢ output block GAU out $\rightarrow\otimes \longleftarrow$ tanh || tanh tanh | sigm in

- Without additional operations, the outputs order is determined in advance – just the same as input sources.
- G does not require future mixture spectra during inference

Symbol	Operation
GAU	Gated Activation Unit
FC	Full connection
MLP	Multi-layer perceptron
sigm	sigmoid activation
©	concatenation
S	equally slicing
\otimes	element-wise multiplication
\oplus	element-wise addition

Multi-time-step Prediction Training

- inference stages.

• Dataset: WSJ0-2mix

- condition (CC).

• Experimental Results

• SDR improvements (dB) for different step numbers in MPT		t step	 SDR improvements (dB) and approximate model size comparisons of different methods 			
Stop pumber	SDR Imp.		Method	Model Size	SDR Imp.	
Step number	CC	OC		(million)	CC	OC
1	-3.0	-2.4	Oracle NMF	-	5.1	-
5	6.7	6.9	CASA	-	2.9	3.1
10	7.1	7.4	DPCL	6.3	6.5	6.5
30	8.8	9.0	DPCL+	10.6	-	9.4
60	9.3	9.5	PIT-CNN-51\51	-	7.6	7.5
90	9.2	9.2	uPIT-BLSTM-AM	46.4	9.0	8.7
120	9.0	9.0	uPIT-BLSTM-PSM	46.4	9.4	9.4
			DANet-6 anchor-LSTM	-	-	9.0
			uPIT-LSTM-PSM	65.7	7.0	7.0
			Source-aware context network	7.2	9.3	9.5

• To alleviate the mismatch between training and

• At the first time step t' = t, source inputs are all clean spectra. Then at each time step t', outputs $\hat{\mathbf{X}}_{k,t'}$ are fed back as inputs $\tilde{\mathbf{X}}_{k,t'}$ to replace original clean spectra $\mathbf{X}_{k,t'}$ for the next time step t'+1

• This procedure repeats S times recursively, generating a sequence of estimated source spectra $\hat{\mathbf{x}}_{k t'}$

• MSE across all time steps is used for training:

 $L = \frac{1}{FS} \sum_{s=0}^{N} \sum_{k=1}^{N} \left\| \mathbf{x}_{k,t+s} - \hat{\mathbf{x}}_{k,t+s} \right\|_{2}^{2}$

Experiments

training set: 30 hours from WSJ0 si_tr_s. validation set: 10 hours from WSJ0 si_tr_s, closed

test set: 5 hours from WSJ0 si_dt_05 and si_et_05, 16 unseen speakers, open condition (OC).