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> Problem: 1.The semantic slots for dialog state representation are difficult to define

manually.

2. The interviewee’s response contains irrelevant sentences.
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> Goal: Propose an attention weighting mechanism for dialog state tracking in a t f f
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> Approach: 1. Topic profile similarity between question and a response sentence is CNTN
estimated based on LDA-based topic model. _ B .
. . . | e = a-Relsco,+ (1 — a) - Simsco;
2. Relevance score between question and a response sentence is obtained &(,) { o(e)
based on convolutional neural tensor network (CNTN). [ a4 =5 Ul( o)
. . . . =1 l
3. Attention mechanism for sentence weighting.
4. Two-layer LSTM-based autoencoder for dialog state tracking. Simsco; Cosine Similarity

guestion and each response sentence.
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Architecture of Two-layer LSTM-based Autoencoder
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Experimental Results

» NCKU Interview Database collected 260 dialogs with 1/54

ordinary questions and 1262 follow-up questions.

Total
Number of turns 3016
Average number of turns 10.7
Average number of sentences in each answer 3.84
Interview time (minutes) per interview 20

» The accuracy of CNTN-based attention model achieved
89.87%, when the tensor dimensionality was 1 and the

number of CNN filters was 128
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number of topics was 30.

Number of CNN filters
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» LSTM-based autoencoder was evaluated by visualizing the
vector representation of input and output sequence, when the
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» Performance Comparison between the traditional and the

proposed methods using the same Double Q-learning agent.
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Parameters 10 semantic slots 30-D topic profile

10-D topic profile
Dialog states = 256 Dialog states = 64 Dialog states =128

Turn 4.74 4.80 5.72

Diff 1.00 0.94 0.02
Accumulative
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Cconclusions

» A five-fold cross validation scheme was employed and the
results show that the proposed method outperformed the
semantic slot-based method.




