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Experimental Results
 NCKU Interview Database collected 260 dialogs with 1754

ordinary questions and 1262 follow-up questions.

 The accuracy of CNTN-based attention model achieved

89.87%, when the tensor dimensionality was 1 and the

number of CNN filters was 128

 LSTM-based autoencoder was evaluated by visualizing the
vector representation of input and output sequence, when the
number of topics was 30.

 Performance Comparison between the traditional and the
proposed methods using the same Double Q-learning agent.

Conclusions
 A five-fold cross validation scheme was employed and the

results show that the proposed method outperformed the

semantic slot-based method.
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Architecture of CNTNSystem Framework

Architecture of Two-layer LSTM-based Autoencoder 

Introduction
 Goal :

 Problem:

 Approach:

1. The semantic slots for dialog state representation are difficult to define 
manually.

2. The interviewee’s response contains irrelevant sentences. 

1. Topic profile similarity between question and a response sentence is 
estimated based on LDA-based topic model.

2. Relevance score between question and a response sentence is obtained 
based on convolutional neural tensor network (CNTN).

3. Attention mechanism for sentence weighting.
4. Two-layer LSTM-based autoencoder for dialog state tracking.

Propose an attention weighting mechanism for dialog state tracking in a 
conversational interview coaching system.

Total
Number of turns 3016
Average number of turns 10.7
Average number of sentences in each answer 3.84

Interview time (minutes) per interview 20

Method
Semantic slot

(baseline)

Topic profile
w/o sentence 

attention

Topic profile
w/ sentence 

attention

Parameters 10 semantic slots
Dialog states = 256

30-D topic profile
Dialog states = 64

α = 0.5
10-D topic profile

Dialog states = 128

Turn 4.74 4.80 5.72

Diff 1.00 0.94 0.02
Accumulative 
Reward 6.46 6.34 7.27
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Relevance score between question 
and each response sentence.

Topic profile similarity between  
question and each response sentence.
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