Compressive Regularized Discriminant Analysis (CRDA) High-dimensional Classification and Feature Selection – Applications to Microarray Studies

Muhammad Naveed Tabassum and Esa Ollila Dept. of Signal Processing and Acoustics, Aalto University, Finland

Motivation

Goals:

1 Given G possible classes (or populations), classify a pdimensional observation \mathbf{x} accurately to its correct class. 2 Reduce the number of variables (or features) without sacrificing the accuracy.

Challenge: High-dimension (HD) low-sample size settings, where p is often several magnitudes larger than the number of observations, n (i.e., $p \gg n$, for example *mi*croarray data.

Sparsity facilitates interpretation and stabilizes estimation in the HD situations.

Problem Formulation

 \star Following *rule* assigns **x** to one of the G classes

 $\mathbf{x} \in \operatorname{group}\left[\widetilde{g} = \arg\max_{q} d_{q}(\mathbf{x})\right],$ (1)

where $g \in \{1, \ldots, G\}$ and $d_q(\mathbf{x})$ is called the discriminant function.

Linear discriminant analysis (LDA) uses the rule (1) with,

$$d_g(\mathbf{x}) = \mathbf{x}^\top \boldsymbol{\beta}_g + c_g$$

for $g = 1, \ldots, G$, where:

$$\boldsymbol{\beta}_g = \boldsymbol{\beta}_g(\boldsymbol{\Sigma}) = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_g \quad \in \mathbb{R}^p \tag{2}$$

$$c_g = -\frac{1}{2} \boldsymbol{\mu}_g^{\mathsf{T}} \boldsymbol{\beta}_g + \ln p_g \quad \in \mathbb{R}$$
 (3)

where Σ is common covariance matrix of the classes, μ_a denotes the class mean vector $(g = 1, \ldots, G)$ and p_q is a prior probability that \mathbf{x} is from class g.

If the i^{th} entry of β_q is zero, then the i^{th} feature does not contribute in the classification to g^{th} population.

Regularized LDA

- \star Training dataset $\mathbf{X} = (\mathbf{x}_1 \cdots \mathbf{x}_n) \in \mathbb{R}^{p \times n}$ is given with associated class labels $c(i) \in \{1, \ldots, G\}$.
- \star Unknowns, p_g , μ_g and Σ , are estimated from **X**.
- $\star \hat{p}_{g} = \pi_{g} = n_{g}/n$, where $(n_{g} = \sum_{i=1}^{n} \mathsf{I}(c(i) = g))$.

For $g = 1, \ldots, G$, assuming observations in **X** are centered by the sample mean vectors of the classes

$$\hat{\boldsymbol{u}}_g = \overline{\mathbf{x}}_g = \frac{1}{n_g} \sum_{c(i)=g} \mathbf{x}_i, \qquad (4)$$

the pooled sample covariance matrix (SCM) is given as:

$$\mathbf{S} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}.$$

W

In practice, the rule (1) uses $\hat{d}_q(\mathbf{x})$ with $\hat{\boldsymbol{\beta}}_q = \mathbf{S}^{-1} \hat{\boldsymbol{\mu}}_q$ in (2). However, \mathbf{S} is singular and is no longer invertible in the HD settings.

- \star Thus, a regularized SCM (RSCM) $\hat{\Sigma}$ is used to avoid the singularity and to construct the empirical LDA rule.
- \star Such approaches are referred to as regularized LDA (see e.g., [1,2,3]) which we refer shortly as RDA.

As RSCM we use $\hat{\boldsymbol{\Sigma}} = \alpha \, \mathbf{S} + (1 - \alpha) \, \eta \mathbf{I}$ (5)where $\eta = \text{Tr}(\mathbf{S})/p$ and $\alpha \in [0,1)$ is a regularisation parameter that is calculated using the method proposed in [4] or using cross-validation (CV).

Next, the computational complexity of matrix inversion is reduced from $\mathcal{O}(p^3)$ to $\mathcal{O}(pn^2)$ using the SVD-trick [1].

$$\hat{\boldsymbol{\Sigma}}^{-1} = \mathbf{U} \left[\left(\frac{\alpha}{n} \mathbf{D}^2 + (1 - \alpha) \eta \mathbf{I}_m \right)^{-1} - \frac{1}{(1 - \alpha) \eta} \mathbf{I}_m \right] \mathbf{U}^\top + \frac{1}{(1 - \alpha) \eta} \mathbf{I}_p,$$
(6)
where $\mathbf{X} = \mathbf{U} \mathbf{D} \mathbf{V}^\top$ and $\eta = \text{Tr}(\mathbf{S})/p = \text{Tr}(\mathbf{D}^2)/np.$

Compressive RDA (CRDA)

We express LDA discriminant rule in vector form:

$$\mathbf{d}(\mathbf{x}) = (d_1(\mathbf{x}), \dots, d_G(\mathbf{x})) = \mathbf{x}^\top \mathcal{B} - \frac{1}{2} \operatorname{diag}(\mathbf{M}^\top \mathcal{B}) + \ln \mathbf{p},$$
(7)

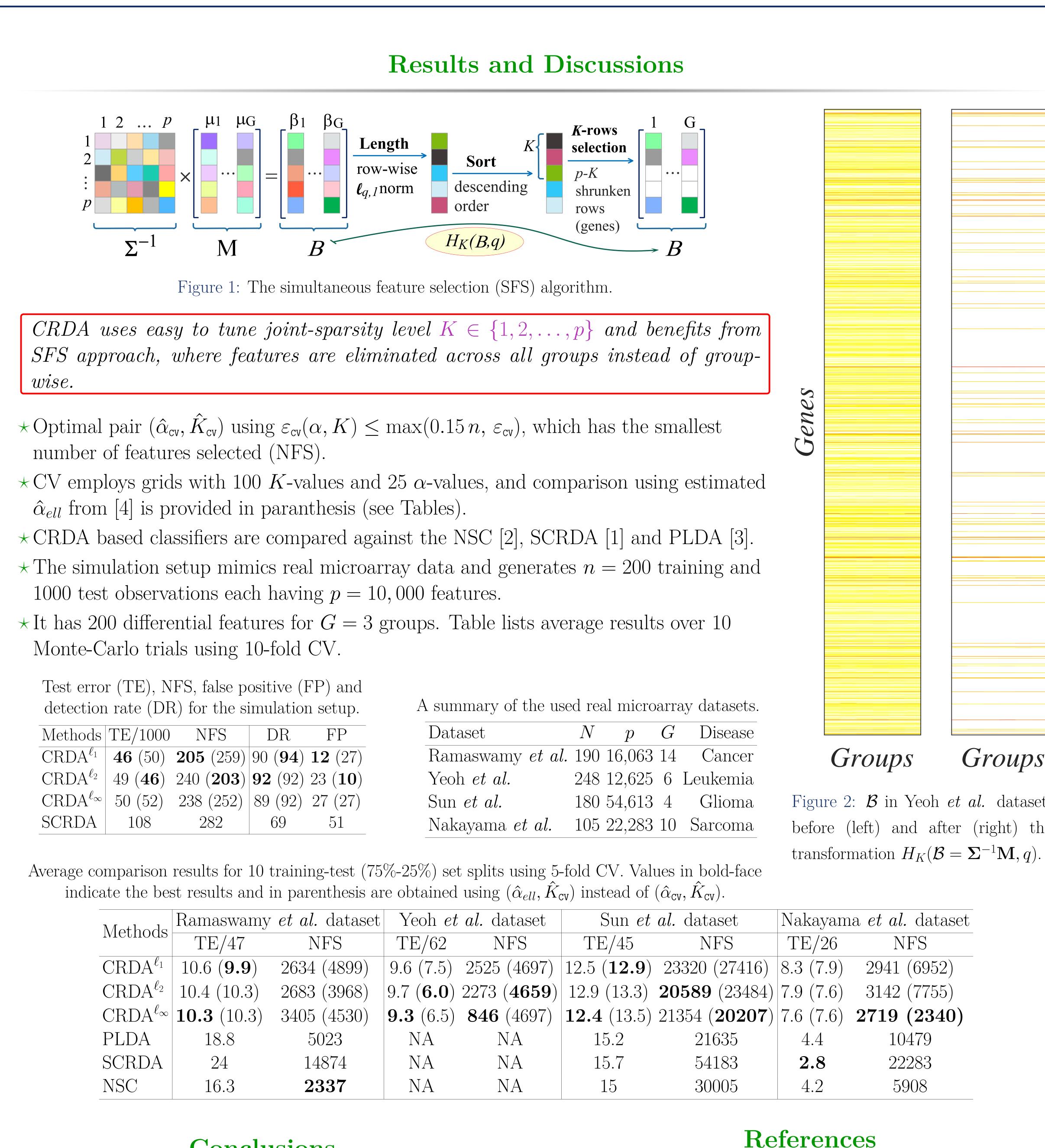
where $\ln \mathbf{p} = (\ln p_1, \dots, \ln p_G)$, $\mathbf{M} = (\boldsymbol{\mu}_1 \dots \boldsymbol{\mu}_G)$, $\boldsymbol{\mathcal{B}} =$ $\Sigma^{-1}\mathbf{M}$ and diag $(\mathbf{A}) = (a_{11}, \ldots, a_{GG})$ for some matrix \mathbf{A} .

K-rowsparsity of $\mathcal{B} \in \mathbb{R}^{p \times G} \rightsquigarrow p - K$ features (genes) do not contribute in the classification procedure.

- \star The simultaneous feature selection (**SFS**) is obtained by using hard-thresholding operator $H_K(\cdot, q)$.
- \star It is defined as a transform $H_K(\mathcal{B},q)$.
- \star It retains the elements of the K rows of \mathcal{B} that possess largest ℓ_q norm and set elements of the other rows to zero, as illustrated in Figure 1.
- \star We use $q = 1, 2, \infty$.

Our *CRDA* uses estimated discriminant function

$$\hat{\mathbf{d}}(\mathbf{x}) = \mathbf{x}^{\top} \hat{\mathcal{B}} - \frac{1}{2} \operatorname{diag}(\hat{\mathbf{M}}^{\top} \hat{\mathcal{B}}) + \ln \boldsymbol{\pi},$$
 (8)
where $\ln \boldsymbol{\pi} = (\ln \pi_1, \dots, \ln \pi_G), \, \hat{\mathbf{M}} = (\hat{\boldsymbol{\mu}}_1 \dots \hat{\boldsymbol{\mu}}_G)$ and
 $\hat{\mathcal{B}} = H_K(\hat{\boldsymbol{\Sigma}}^{-1} \hat{\mathbf{M}}, q)$
having *K* non-zero rows, e.g., as shown in Figure 2.



Conclusions

- $\star Proposed CRDA$ of data in high-dimension lowsample size situations was shown to outperform competing methods in most of the cases.
- $\star It can be a useful tool for accurate selection of (dif$ ferentially expressed) features, i.e., genes in microarray studies.

*See our paper for more detailed results and discussions.

- [1] Yaqian Guo, Trevor Hastie, and Robert Tibshirani, "Regularized linear discriminant analysis and its application in microarrays," *Biostatistics*, vol. 8, no. 1, pp. 86–100, 2006.
- [2] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu, "Class prediction by nearest shrunken centroids, with applications to dna microarrays," Statistical Science, pp. 104–117, 2003.
- [3] Daniela M Witten and Robert Tibshirani,
- "Penalized classification using fisher's linear discriminant,"
- Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 73, no. 5, pp. 753-772, 2011
- [4] Esa Ollila

"Optimal high-dimensional shrinkage covariance estimation for elliptical distributions," in European Signal Processing Conference (EUSIPCO 2017), Kos, Greece, pp. 1689–1693.

Groups

Figure 2: \mathcal{B} in Yeoh *et al.* dataset: before (left) and after (right) the