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Background
• The audio-visual synchronization drifts in some videos 

uploaded to video hosting/social networking services

• The viewers evaluate the video contents more negatively 

when the synchronization drifts [Reeves&Voelker, 1993]

• Recovering audio-visual synchronization is an important 

task in the field of visual speech processing

• Our work focuses on recovering audio-visual 

synchronization of single-person speech videos
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Previous Work
Recovering AV-sync using QMI [Liu&Sato, 2010]

computes QMI between audio and visual features, and 
uses it as the correlation value to determine whether the 
audio and video are synchronized correctly or not.
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Y. Liu and Y. Sato, “Recovery of audio-to-video synchronization through analysis of cross-modality correlation,” 

Pattern Recognition Letters, vol. 31, no. 8, pp.696701, 2010.



Weakness of the Previous Work
a. Feature Extraction

They use the vertical optical flows of speaking lip 

image sequences as visual feature. 

→ Lack of Robustness

b. Searching Approach

They have to shift by all possible synchronized 

position using the sliding window to find the correct 

shift position.

→ Worse Computational Complexity
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Our Contributions
1. We propose a novel architecture for recovering 

audio-visual synchronization using a CNN

→ Addressing Feature Extraction problem

2. We show the benefit of treating audio-visual 

synchronization as a regression problem

→ Addressing Searching Approach problem
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AV-sync Approaches
• The sliding window approach

• The regression approach
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Summary of Our Work
• We propose a multi-modal regression CNN for audio-

visual synchronization for single-person speech videos. 

We call the proposed model WLOS (Watch, Listen Once, 

and Sync).

• We also show experimental results that demonstrate 

the proposed method outperforms baseline methods.
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Visual Input Representation
① Detect facial landmarks by Kazemi and Sullivan’s 

method [3] for each video frame

② Facial alignment with Affine Transform

③ Extract lip area of spatial resolution 32 × 32

④ Compute optical flows with Gunnar Farnebäck
method [4]
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[3] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression trees,” in CVPR, 2014.

[4] G. Farneback, “Two-frame motion estimation based on polynomial expansion,” in SCIA, 2003.



Audio Input Representation
We use Mel-Frequency Cepstrum Coefficients (MFCCs) 
[Davis& Mermelstein, 1990] as the audio feature

① Apply the hamming window whose size is 256

② Compute the 13 MFCCs and use 12 MFCCs except the 
very first MFCC which is not informative about the 
actual spectral content
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Network Architecture of WLOS
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Fine-tuning
We use pre-trained weights as the initial weights of the 
visual network and the audio network.

The network for pre-training

Train to predict whether the audio and visual information 
are correlated or not (binary classification problem)

We call this “classification correlation CNN (C³)”
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Network Architecture of C³
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Experiment – Dataset
Overview

• Intentionally drifted audio-visual dataset 
from GRID Corpus [Cooke et al., 2006]

• The audio-visual pairs including −9- to +9-frame drifts

Details

• 63739 pairs for S1, 64000 pairs for S2
63992 pairs for S4, 63997 pairs for S7

• 80%:20% random split for train and test
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Experiment – Baseline Methods
a. QMI

Sliding Window Search with QMI 
(based on [Liu&Sato, 2010])
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Experiment – Baseline Methods
a. QMI

Sliding Window Search with QMI 
(based on [Liu&Sato, 2010])

b. C³
Sliding Window Search with C³
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Experiment – Baseline Methods
a. QMI

Sliding Window Search with QMI 
(based on [Liu&Sato, 2010])

b. C³
Sliding Window Search with C³

c. WLOS (scratch)
WLOS without pre-training.
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Experiment – Baseline Methods
a. QMI

Sliding Window Search with QMI 
(based on [Liu&Sato, 2010])

b. C³
Sliding Window Search with C³

c. WLOS (scratch)
WLOS without pre-training.
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Result – Accuracy Evaluation
• CNN-based method outperform QMI baseline

• Positive effect of pre-training
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Method S1 S2 S4 S7

QMI (based on [Liu&Sato, 2010]) 6.305 6.494 6.196 6.479

C³ 1.352 2.134 2.983 1.019

WLOS (scratch) 0.937 1.003 1.116 0.848

WLOS (fine-tune) 0.907 0.916 1.038 0.799

Table 1. Mean absolute error on Test Data (frame).
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Result – Computational Time 
WLOS is approximately 19 times faster than C³ because 

WLOS does not use a sliding window.
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Method Approach Time [ms]

QMI (based on [Liu&Sato, 2010]) Sliding Window 46.07

C³ Sliding Window 34.00

WLOS Regression 1.80

Table 2. Processing time to synchronize a frame

Y. Liu and Y. Sato, “Recovery of audio-to-video synchronization through analysis of cross-modality correlation,” 

Pattern Recognition Letters, vol. 31, no. 8, pp.696701, 2010.



Conclusion
• We proposed a multi-modal regression CNN for 

recovering audio-visual synchronization

• The proposed approach enables us to recover errors 
without searching with a sliding window which would 
increase computational cost

• Experimental results show that the proposed method 
performs better than the baseline methods

• WLOS is more accurate and faster!

• In future work, we will make it possible to correct 
audiovisual synchronization errors of general videos 
instead of speech videos
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