

Introduction

- Role of combining prosodic variables with the existing acoustic features in the context of children's speech recognition under mismatched conditions has been explored.
- ► The prosodic variables considered here are loudness, voice-intensity and voice-probability.
- ► The explored acoustic features are Mel-frequency cepstral coefficients (MFCC) and perceptual linear prediction cepstral coefficients (PLPCC).
- ► An analysis presented here shows that, for the same textual content, the considered prosodic variables exhibit very similar contours for adults' and children's speech.
- At the same time, the contours differ a lot when the context is different.
- ► Therefore, inclusion of prosodic information reduces the inter-speaker differences and increases the class discrimination.
- ► This improves the recognition performance in the case of children's mismatched ASR.
- Further improvements are obtained by projecting the feature vectors to a lower-dimensional subspace.
- ► This is experimentally verified using deep neural network (DNN) based automatic speech recognition system.
- On combining MFCC (PLPCC) and prosodic features, a relative improvement of 16% (14%) is noted on decoding children's speech using adult data trained DNN models.

Motivation

- Inclusion of prosodic information is first explored on the connected digit recognition task.
- ► The details of the speech corpus used for developing the digit recognition system are as follows:
- ► The training and the test data for the connected digit recognition was obtained from the TIDIGITS database.
- ▶ The age of the adult speakers contributing to this database varies from 17 to 70 years.
- ► The child speakers, on the other hand, belong to an age group of 6 to 15 years.
- A train set comprising of 5.3 hours of speech data from 197 adult male/female speaker was created from this database.
- Two different test sets were derived for testing.
- The first test set was composed of 1.6 hours speech data from 81 adult speakers.
- ► The other test set comprised of 1.9 hours speech data from 49 children.
- The specifications of the connected digit recognition system are as follows:
- Speech data was first analyzed into short-time frames using overlapping Hamming windows of length 20 ms with frame rate of 100 Hz.
- ► A 23-channel Mel-filterbank was employed to compute the 13-dimensional base MFCC features.
- This was followed by time-splicing of the base features considering a context size of 9, i.e., ± 4 frames.
- ► The dimensionality of the resulting time-spliced features was then reduced to 40 using linear discriminant analysis (LDA).
- Further de-correlation of the feature vectors was done through maximum likelihood linear transform (MLLT).
- Mean and variance normalization (MVN) was also performed.
- The 11 digits (0-9 and 'OH') were modeled as whole words using continuous density hidden Markov models (HMM) employing 3 states per word including silence.
- ► Each HMM state, in turn, was modeled using 6 diagonal-covariance Gaussian mixture models (GMM).
- An equilikely wordnet was employed during testing.
- ► The metric used to measure the recognition performance is word error rate (WER).
- ► The WERs for the connected digit recognition system with respect two adults' and children's speech test sets are given in following table.

Test	WER (in %)		
set	MFCC	MFCC+Prosody	
Adult	1.65	1.91	
Child	9.17	6.93	

- ► The WER is noted to reduce for children's speech by the inclusion of prosodic information.
- ► For children's speech test set, the WER for each of the eleven digits with and without the inclusion of prosodic variables are enlisted separately in the following table.

WER (in %)						
Digit	MFCC	MFCC	Digit	MFCC	MFCC	
		+ Prosody			+ Prosody	
One	5.40	7.10	Six	6.00	3.80	
Two	4.90	1.60	Seven	9.60	5.60	
Three	7.90	7.20	Eight	18.80	20.60	
Four	6.30	4.40	Nine	1.00	0.50	
Five	16.00	5.40	Oh	5.40	4.00	

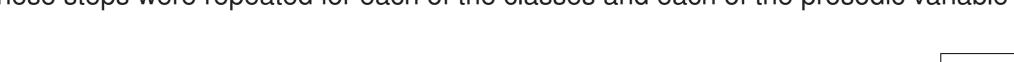
- The WER is noted to reduce for most of the digits by including prosodic variables.
- ► For majority of the digits, the reduction in WER is very large. The WERs for all those cases have been presented in bold.
- ► On the other hand, the WER is found to increase for digits *one* and *eight*.
- ► These observations motivated us to further explore the role of prosodic features in children's mismatched ASR.

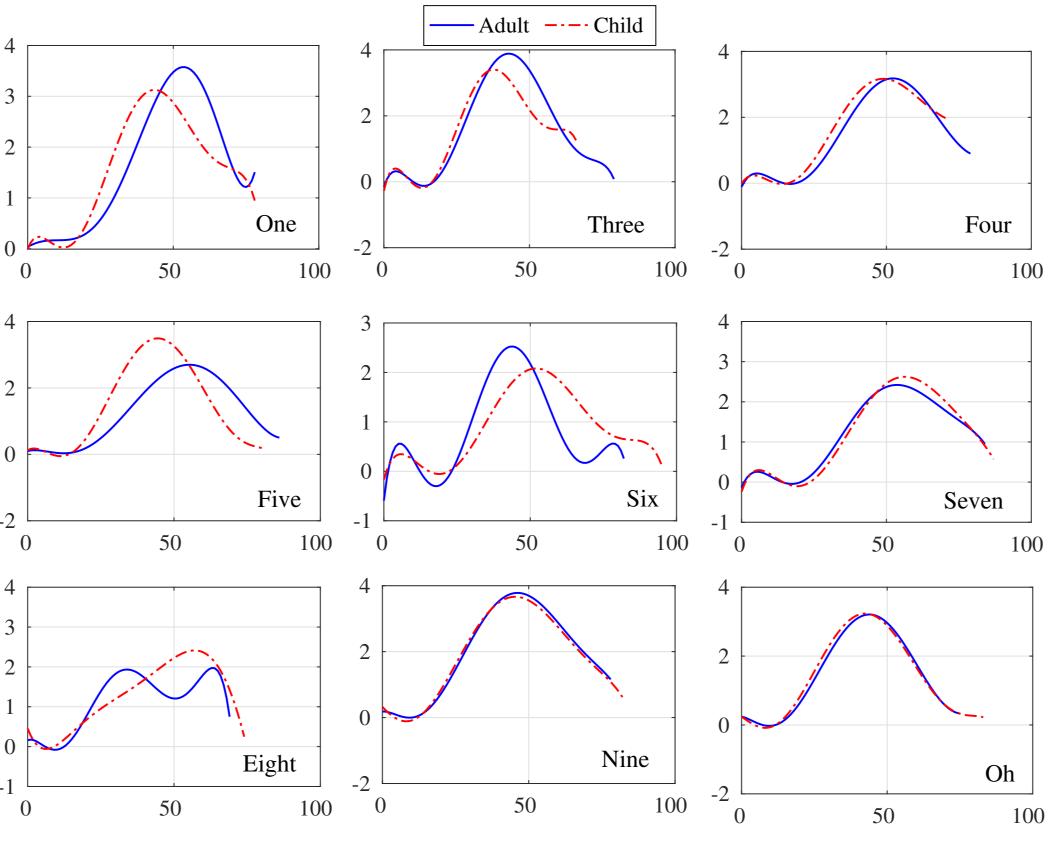
ROLE OF PROSODIC FEATURES ON CHILDREN'S SPEECH RECOGNITION

Hemant K. Kathania¹, S. Shahnawazuddin², Nagaraj Adiga³ and Waquar Ahmad¹

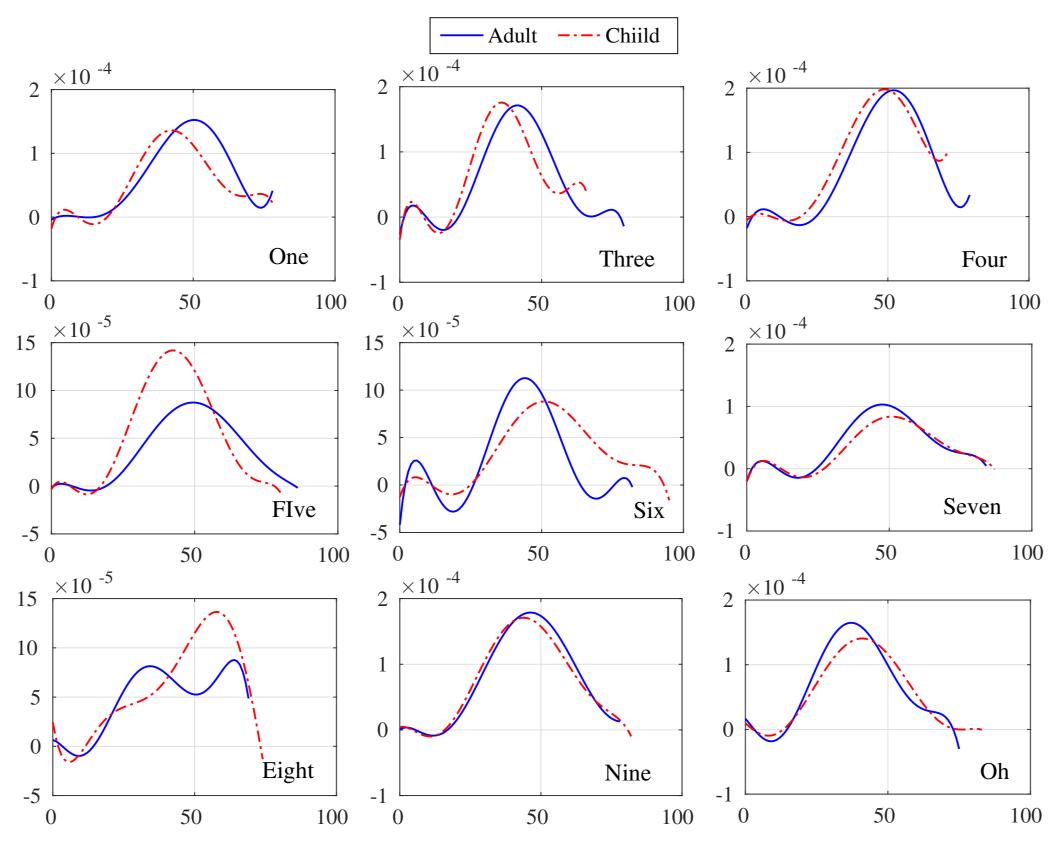
Analyzing the cause of improved recognition performance

- ► In order to develop ASR systems, given the training data, relevant front-end features are extracted first.
- ► If the front-end features are such that the discrimination among the classes is more, then better performance will be obtained.
- ▶ In other words, the front-end features should be such that the *within-class differences* are minimal and the *between-class differences* are large.
- ► Using this reasoning, we studied the nature of explored prosodic variables for each of the classes.
- ► For any given digit (class), the deviation in the value of the prosodic variables for adult and child speakers should be very small.
- ► At the same time, the nature should be dissimilar for those classes where adding prosodic information did not help.
- ► In order to study the nature of any particular prosodic variable, smooth contours were derived for each of the classes as follows:
- Forty isolated utterances of a given class, say digit one, were selected at random from the database. Twenty of those were collected from adults while remaining twenty were from child speakers.
- Next, the prosodic variables were computed for each of the utterances from the adult speakers.
- The mean value for each of the frames was then computed using all the twenty examples.
- ► In a similar manner, the mean was computed using the examples from children.
- Finally, a seventh-order polynomial function was fitted over the mean data to derive a smooth contour. These steps were repeated for each of the classes and each of the prosodic variable kinds.



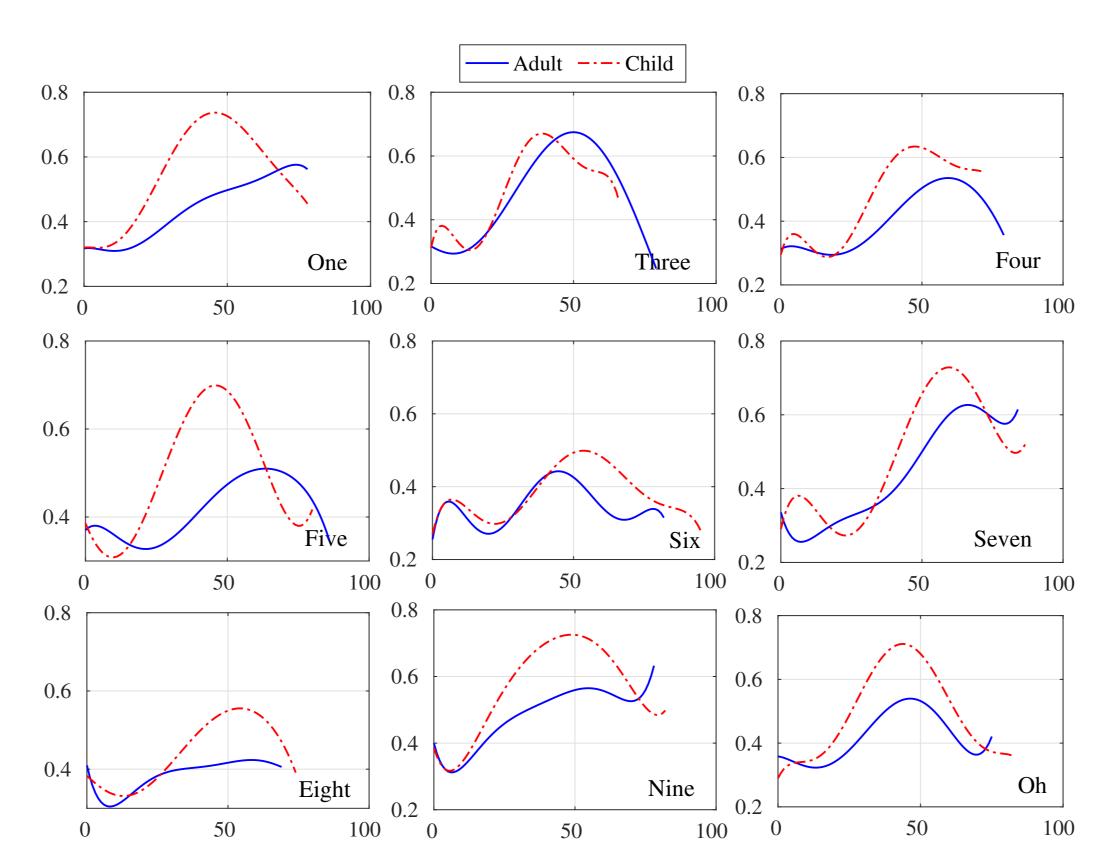


- ▶ The smooth contours for mean loudness are as shown above.
- ► The smooth contours for mean intensity and voice probability are shown in the following figures.



- ► For each of the classes, the blue (solid) curves are for the case when data from adult speakers is used. The red (dash-dot) curves are obtained using data from children.
- > The smooth contours for the mean of the explored prosodic variables derived using adults' and children's speech are very similar for those cases where the WERs have reduced.
- ► The WER had increased significantly for digits one and eight and the contours for adult and child speakers are also starkly different in those cases.
- For two different digits, the prosodic contours do not look similar thereby enhancing the inter-class differences.

- ¹Department of Electronics and Communication Engineering, NIT Sikkim, India
- ²Department of Electronics and Communication Engineering, NIT Patna, India
 - ³Department of Computer Science, University of Crete, Greece
- hemant.ece@nitsikkim.ac.in, s.syed@nitp.ac.in, nagaraj@csd.uoc.gr, waquar@nitsikkim.ac.in



Continuous speech recognition task

- ► For experimental evaluations, ASR systems were developed on the 15.5 hours adults' speech data from WSJCAM0 British English speech corpus.
- ► There are a total of 7861 utterances from 92 adult (male/female) speakers with approximately 90 sentences per speaker in this train set.
- ► For mismatched testing, the children's speech test set of the PF-STAR British English speech database was used.
- ▶ This test set contains 1.1 hours of speech data from 60 child speakers with a total of 5067 words.
- The experimental evaluations were performed on wideband speech.
- ► For computing the MFCC/PLPCC feature vectors, the earlier described steps were followed with a difference that a 40-channel Mel-filterbank was used.
- ► To boost the robustness towards speaker variations, feature-space maximum likelihood linear regression (fMLLR) was employed for normalization.
- The observation probabilities for the HMM states were generated using the GMM and DNN.
- Cross-word triphone models consisting of a 3-states HMM with 8 diagonal covariance Gaussian components per state were used in the case of GMM-HMM-based ASR system. ► Decision tree-based state tying was performed with the maximum number of tied-states (senones) being fixed at 2000.
- ► While learning the DNN-HMM-based ASR system, the fMLLR-normalized feature vectors were time-spliced once again considering a context size of 9.
- ▶ The number of hidden layers was chosen as 8 with each layer consisting of 1024 hidden nodes.
- ▶ The nonlinearity in the hidden layers was modeled using the *tanh* function.
- ► The initial learning rate for training the DNN-HMM parameters was set at 0.015 which was reduced to 0.002 after 20 epochs and extra 10 epochs of training were employed. ► The minibatch size for neural net training was selected as 512.
- ► For decoding the children's speech test set, a domain-specific 1.5k bigram language model (LM) was employed.
- ► The out-of-vocabulary (OOV) rate and perplexity of the employed bigram LM with respect to the children's test set are 1.20% and 95.8, respectively.
- A lexicon of 1,969 words including the pronunciation variations was employed.
- ► The WERs for the children's speech test, with and without the inclusion of prosodic information are given in the following table.
- ► Inclusion of prosodic variables results in significant reduction in WERs for both GMM and DNN-based ASR systems.
- ► Further improvements were obtained by projecting the data to lower-dimensional subspace using heteroscedastic linear discriminant analysis (HLDA).

- Another DNN-HMM-based ASR system was developed by pooling together speech data from both adult as well as children train sets.
- Only MFCC features were used in this case.
- ► The WERs for children's speech test set with respect to this new ASR system are given in the following table.
- Low-rank feature projection through HLDA results in added reductions in WERs.

Conclusion

- studied in this work.

► The role of prosodic features in the context of continuous speech recognition task was explored next.

Explored	Acoustic	WER (in %)		
Acoustic	Feature	Baseline	+ Prosody	+ Prosody
Model	Kind			+ HLDA
GMM	MFCC	32.69	25.81	20.63
	PLPCC	33.21	26.96	21.35
DNN	MFCC	19.68	16.66	12.73
	PLPCC	20.16	17.51	13.28

▶ The children's speech train set derived from PF-STAR consisted of 8.3 hours of speech data from 122 children.

► Inclusion of prosodic features is observed to improve the recognition performance in this case as well.

Acoustic	WER (in %)			
Model	Baseline	+ Prosody	+ Prosody + HLDA	
DNN	11.47	9.98	8.82	

> The effectiveness of combining prosodic variables with two of the dominant acoustic features in the context of children's speech recognition using adult data trained system is

► On combining the prosodic variables with MFCC/PLPCC features, significant reductions in WER are noted.

In order to further improve the system performance, low-rank feature projection is also explored. Additive reductions in WERs are obtained by low-rank feature projection