MODELING-BY-GENERATION-STRUCTURED NOISE COMPENSATION ALGORITHM FOR GLOTTAL **VOCODING SPEECH SYNTHESIS SYSTEM**

- This paper proposes a **modeling-by-generation (MbG)**structured noise compensation method for a glottal excitation model in a deep learning (DL)-based speech synthesis system
- A generated glottal signal by the model training process does not faithfully represent noise component, thus the signal can be treated as harmonic component.
- between original and generated glottal signals is parameterized into **noise features**, then they trained and generated by additional DL network.
- and **added** to the generated glottal signal.

analysis method

Min-Jae Hwang¹, Eunwoo Song^{1,2}, Kyungguen Byun¹ and Hong-Goo Kang¹

¹DSP Lab., Yonsei University, Seoul, Korea ²NAVER Corp., Seongnam-si, Gyeonggi-do, Korea

$$\mathbf{g}_{comp} = \mathbf{g}_{gen} + \sqrt{\frac{HNR_{noise}}{HNR_{t\,\mathrm{arget}}}} \cdot \hat{\mathbf{n}}$$

✤ Settings

•				
Database	abase Korean male speaker, 16kHz		kHz	
Training / validation / test	2,500 (~3h) / 200/ 200			
GIF analysis method	Quasi-closed phase analysis			
Network type	Acoustic model	Glottal model	Noise model	
Input layer	210-dim. LFs	210-dim. LFs	210-dim. LFs	
Hidden feed forward layer	1024 x 2	512 x 3	512 x 2	
Hidden LSTM layer	512 x 2	256 x 1	256 x 1	
Output layer	142-dim. AFs	400-dim. GFs	48-dim. NFs	
Initialization	Xavier initialization			
Optimizer	Adam optimizer			
Activation function	tangent hyperbolic for hidden / linear for output			
	Maximum likelihood parameter generation			
Post-processing	LSF-sharpening processing on all LSFs			
	Formant enhancement on LSF_VT			
Objective evaluation Log spectral distance (dB) betw	ween original and	noise compensat	ed glottal pulses	

8.55 7.9

Subjective evaluation with baseline STRAIGHT-based synthesis system

A/B/X prefet

				1		interval			
STR.	HNR-NC	MF-NC	MbG	No pref.	p-vale				
	2.2	07 5		0.2	< 10-79	<u> </u>	HINK-INC	IVIF-INC	IVIDG
-	3.3	87.5	-	9.2	< 10 11	2 90+0 10	2 16+0 13	3 20+0 13	372+011
-	-	5.4	47.1	47.5	$< 10^{-21}$	2.3020.10	2.1020.13	5.2020.13	0.7220.11
25.8	_	64.6	-	9.6	$< 10^{-10}$				
17.9	_	-	75.4	6.7	< 10 ⁻²³				
72.1	10	-	-	17.9	$< 10^{-34}$				
_	1.7	0	93.3	5.9	$< 10^{-113}$				

In both ABX and MOS tests, the proposed system presented significantly better perceptual performances than the conventional systems.

- A modeling-by-generation (MbG)-structured noise compensation algorithm for glottal vocoding speech synthesis system was proposed.
- between the glottal pulses of the original and generated ones and by including it in the entire training process, we were able to construct a **glottal** model-adaptive noise compensation method.
- The experimental results verified that the proposed system was superior to conventional glottal vocoding systems, both objectively and subjectively.

[1] T. Raitio, A. Suni, J. Yamagishi, H. Pulakka, J. Nurminen, M. Vainio, and P. Alku, "HMM-based speech synthesis utilizing glottal inverse filtering," IEEE Trans. Audio, Speech, and Lang. Process., vol. 19, no. 1, pp. 153–165, 2011. [2] M. Airaksinen, B. Bollepalli, L. Juvela, Z. Wu, S. King, and P. Alku, "GlottDNN-a full-band glottal vocoder for statistical parametric speech synthesis." in Proc. INTERSPEECH, 2016, pp. 2473–2477.

Experiments

NC	MbG	The proposed MbG approach shows smaller
3	7.61	errors than those with conventional annroaches
		enors than those with conventional approaches.

-		١.	
erence	test	result	

	KAIGHT-Dased synthesis system
•	MOS test result with 95% confidence
	interval

Conclusion

By directly modeling the missing noise component from the **difference**