Diabetic Retinopathy Detection Based on Deep Convolutional Neural Networks

Introduction

Diabetic retinopathy (DR) is an eye disease associated with long-standing diabetes. Early works on DR detection rely on the design of handcrafted features, which tends to be complicated [1]. Recently, CNN-based methods have significantly improved the DR detection accuracy [2][3]. Fig. 1 shows the proposed DR detection system.

Figure 1: System overview of our proposed DR recognition pipeline based on deep convolutional neural networks.

Туре	Filters	Size/Stride	Output
Convolution	32	5x5/2	336x336
Convolution	32	3x3	336x336
Max Pooling		3x3/2	168x168
Convolution	64	5x5	168×168
Convolution	64	3x3	168x168
Convolution	64	3x3	168x168
Max Pooling		3x3/2	84x84
Convolution	128	5x5	84x84
Convolution	128	3x3	84x84
Convolution	128	3x3	84x84
Max Pooling		3x3/2	42x42
Convolution	256	5x5	42x42
Convolution	256	3x3	42x42
Convolution	256	3x3	42x42
Max Pooling		3x3/2	21x21
Convolution	512	5x5	21x21
Convolution	512	3x3	21x21
Convolution	512	3x3	21x21
Convolution	5	1x1	21x21
Global Avg. Pooling		21x21	1x1

Table 1: SI2DRNet-v1

Table 2: Five major evaluation metrics

Yi-Wei Chen¹, Tung-Yu Wu², Wing-Hung Wong^{2,3} and Chen-Yi Lee¹

¹Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan ²Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA ³Department of Statistics, Stanford University, Stanford, CA, USA

Proposed Framework

Image Enhancement The formulation of the classic linear unsharp masking (UM) is given by:

$$y(n,m) = x(n,m) + \lambda g(n,m) \tag{1}$$

We implement g(n, m) as:

 $g(n,m) = 4[G(n,m,\sigma) * x(n,m) - x(n,m)] (2)$ where $G(n, m, \sigma)$ is a Gaussian filter with σ equals to $\frac{30}{r}$, r is the radius of ROI of the fundus image, * denotes the convolution operator, and λ is set to 4. The DR Classification Network: Table 1 shows the detailed architecture of SI2DRNet-v1.

- To reduce the number of parameters and regularize the model, we use global average pooling and $1 \ge 1$ filters to replace fully connected layers.
- We also found that scaling the kernel size of convolutional layer after each pooling layer from 3 x 3 to 5 x 5 increases the performance.

Post-prediction: Five probability values are extracted from the softmax layer, and summed up according to the following formula:

 $y_{pp} = 0 \cdot p_0 + 1 \cdot p_1 + 2 \cdot p_2 + 3 \cdot p_3 + 4 \cdot p_4 \quad (3)$

where y_{pp} is the post-prediction value, p_0 , p_1 , p_2 , p_3 , and p_4 are the probabilities of normal, mild, moderate, severe, and proliferative DR. Then, we can decide new thresholds according to our objective function, such as quadratic weighted kappa which is more flexible than fine-tuning.

Table 3: Ablation study of the proposed recognition pipeline on the EyesPACS dataset

	Baseline								SI2DRNet-v1
Use pre-train model									
Image enhancement									
More data augmentation									
L1 norm									
Post-prediction									
Scale input resolution (2x)									
Scale input resolution (3x)									
10 crops for testing									
EyesPACS validation set (κ)	0.466	0.611	0.671	0.707	0.723	0.754	0.801	0.808	0.808
EyesPACS test set (κ)	0.471	0.601	0.654	0.704	0.709	0.742	0.796	0.802	0.804

Experiment

We evaluate the proposed framework on two public datasets: EyePACS and Messidor and utilize five metrics as listed in Table 2 to evaluate the performance of our proposed framework.

- Table 3 shows the results of six methods to further boost the recognition accuracy
- Table 4 compares the results of our method with previous works on the Messidor dataset.
- Table 5 shows the comparison results of model complexity.

Table 4: Performance comparison on the Messidor dataset

Mathad	D	R	RDR		
Method	Acc.	AUC	Acc.	AUC	
Fisher Vector [1]	_	_	_	0.863	
VNXK [2]	0.871	0.870	0.893	0.887	
CKML Net $[2]$	0.857	0.862	0.897	0.891	
Comprehensive CAD [4]	_	0.876	_	0.91	
Expert A $[4]$	_	0.922	_	0.94	
Expert B $[4]$	_	0.865	_	0.92	
Zoom-in-Net [3]	0.905	0.921	0.911	0.957	
SI2DRNet-v1	0.905	0.959	0.912	0.965	

Table 5: Model complexity comparison

Network	Input size	Params	FLOPs
CKML Net [2]	451x451	$71.5\mathrm{M}$	19.2G
VNXK $[2]$	449x449	$507.4\mathrm{M}$	$63.4\mathrm{G}$
Zoom-in-Net $[3]$	492x492	$55.8\mathrm{M}$	38.2G
SI2DRNet-v1	672x672	10.6M	15.4G

We present a framework based on DCNN for the DR detection. Along with six useful methods, the proposed framework achieves 0.959 and 0.965 AUC for DR and RDR cases on the Messidor dataset which outperform state of the art (0.921 and 0.957)[3]. Furthermore, we are able to achieve this performance with a lightweight model. Compared with CKML Net [2], VNXK [2], and Zoom-in-Net [3], SI2DRNet-v1 is more memory efficient with at least 5.26x fewer in total parameters and requires lower computation cost with at least 1.24x fewer in total FLOPs.

[1] Ramon Pires, Sandra Avila, Herbert F Jelinek, Jacques Wainer, Eduardo Valle, and Anderson Rocha, "Beyond lesion-based diabetic retinopathy: a direct approach for referral," *IEEE J. Biomed. Heal. informatics*, vol. 21, no. 1, pp. 193–200, 2017.

[2] H H Vo and A Verma, "New Deep Neural Nets for Fine-Grained Diabetic Retinopathy" Recognition on Hybrid Color Space," in 2016 IEEE Int. Symp. Multimed., 2016, pp. 209–215.

Detection,

[4] Clara I Sánchez, Meindert Niemeijer, Alina V Dumitrescu, Maria S A Suttorp-Schulten, Michael D Abramoff, and Bram van Ginneken, "Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data," Invest. Ophthalmol. Vis. Sci., vol. 52, no. 7, pp. 4866–4871, 2011.

Work supported by MOST of Taiwan under 105-2218-E-009 -001, 106-2218-E-009 -009 and NSF of USA under Grant DMS-1407557 and DMS-1721550.

Conclusion

References (Partial)

[3] Zhe Wang, Yanxin Yin, Jianping Shi, Wei Fang, Hongsheng Li, and Xiaogang Wang,

"Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy

CoRR, vol. abs/1706.0, 2017.

Acknowledgements