UNIVERSITY F WEST BOHEMIA

Overall description

Our goal is to evaluate the effect of the expert-created pronunciation lexicons used to build phoneme-based models in comparison with the lexicon-free grapheme-based models.

- Spoken term detection (STD) task
- Comparison of grapheme- and phoneme- based acoustic models
- Elimination of grapheme-to-phoneme (G2P) models • Especially in the search phase
- USC-SFI MALACH data, difficult for G2P
- German word *führer*
- Slovakian town *Kežmarok*
- Jewish name *Lejerowisz*
- Evaluated on English and Czech
- Introduction of the grapheme-mapped word index

Phoneme-based acoustic models

- Expert-defined pronunciation lexicons
- Difficult to transcribe the query into sequence of phonemes on-the-fly

Grapheme-based acoustic models

- Direct mapping of graphemes to the context-dependent acoustic units
- Exactly one grapheme sequence for each word in the recognition lexicon

Acoustic models

- Kaldi DNN-based training
- layer-wise RBM pre-training, SGD, sMBR
- 5 hidden layers (2,048 neurons each), softmax output layer
- 12-dimensional PLP coefficients (Cepstral Mean Normalized), first and second derivates
- Two sets of acoustics models
- the baseline using the phonemes as context-dependent acoustic units with phonetic transcription generated from the pronunciation lexicons
- 2. the grapheme-based models using just the graphemes of the lexicon words
- Language model is the same for grapheme- and phoneme-based models

On the use of grapheme models for searching in large spoken archives Jan Švec¹, Josef V. Psutka², Jan Trmal³, Luboš Šmídl², Pavel Ircing², Jan Sedmidubsky⁴

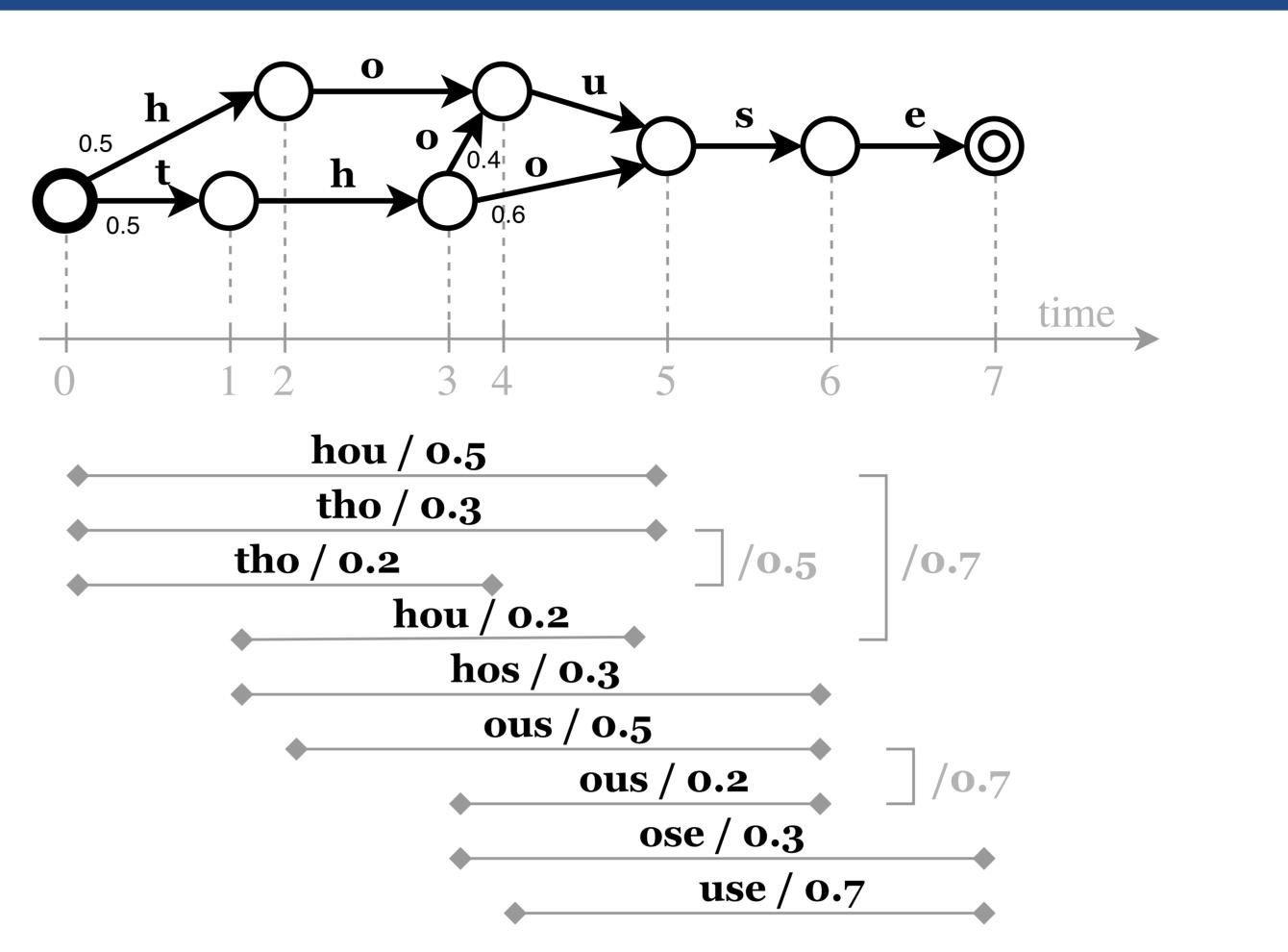
¹NTIS, ²Department of Cybernetics, University of West Bohemia, Pilsen, Czech Republic, ³Center for Language and Speech Processing, Johns Hopkins University, USA, ⁴Faculty of Informatics, Masaryk University, Brno, Czech Republic

Statistics of development and test sets

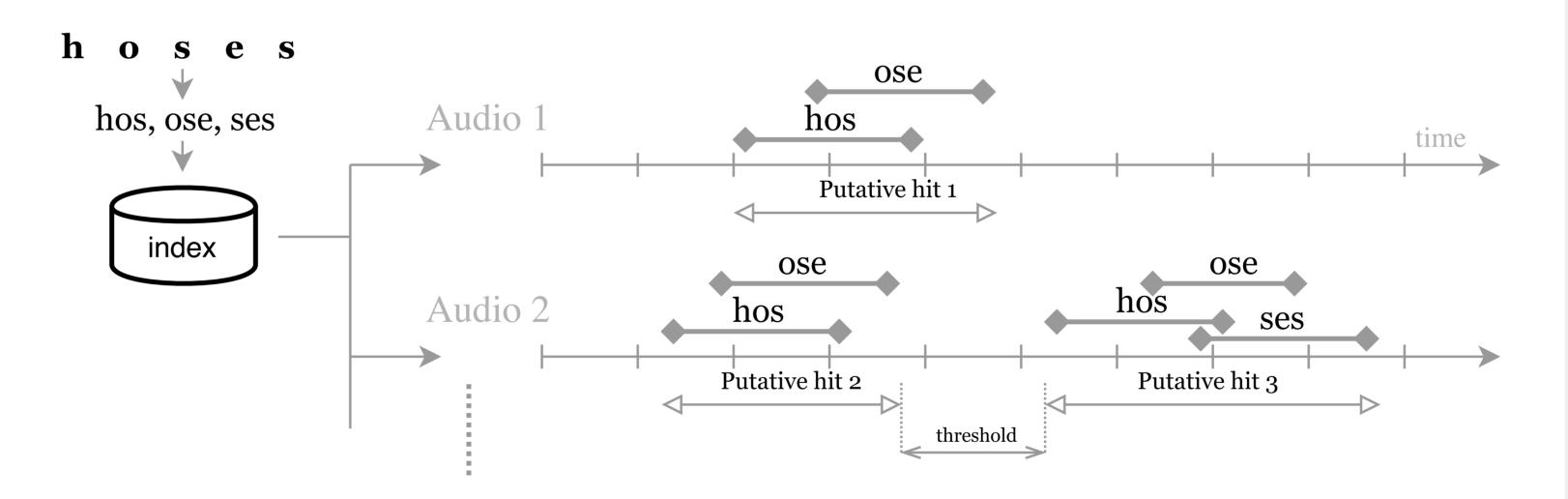
	English		Czech	
	Dev	Test	Dev	Test
LVCSR vocabulary	22,7	723	252,	082
# of graphemes	26	5	3	9
# of phonemes	38	3	4	1
#speakers	10	10	10	10
OOV rate	1.0%	0.7%	3.2%	2.6%
#IV terms	710	735	1762	1764
#OOV terms	154	78	1251	1090
dataset length [hours]	11.1	11.3	20.4	19.4

Recognition error rates

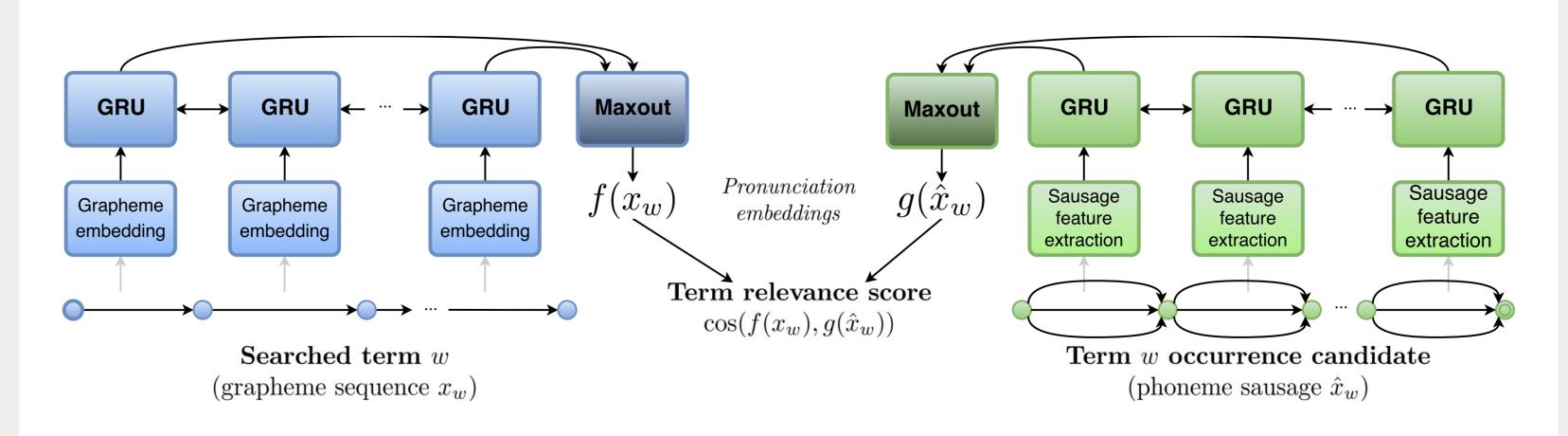
		Dev data		Test data		
		Grphm.	Phnm.	Grphm.	Phnm.	
English	words	26.16	25.39	21.21	20.80	
	sub-words	23.51	22.15	23.18	21.33	
Czech	words	27.66	23.98	23.12	19.11	
	sub-words	20.36	19.21	16.51	16.13	


STD task decomposition

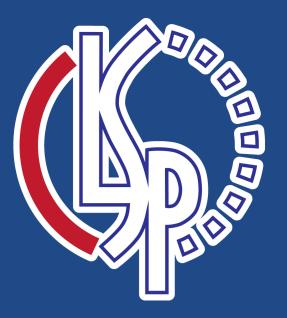
- Speech indexing (off-line)
- Inverted index of sub-word units trigrams
- Putative hits detection
- Search trough the inverted index and cluster the results
- Term score estimation
- Use Siamese neural networks to determine the scores


Grapheme-mapped word index

- Speech recognition based on phonemes • On both word- and sub-word- levels
- Indexation of grapheme lattices created from word-level lattices
- Putative hits detection uses only graphemes
- graphemes of the query
- indexed grapheme lattices
- Elimination of G2P during the search


Indexation of grapheme lattices

Searching using sub-word units



Relevance score estimation

 $l(w, \bar{w}) = \frac{1}{2} \cdot \left[\max\{0, m + d(f(x_w), g(\hat{x}_w)) - d(f(x_w), g(\hat{x}_{\bar{w}})) \right]$ $+ \max\{0, m + d(f(x_{\bar{w}}), g(\hat{x}_{\bar{w}})) - d(f(x_{\bar{w}}), g(\hat{x}_{w}))\}$

This research was supported by the Grant Agency of the Czech Republic, project No. GAČR GBP103/12/G084. Jan Trmal was supported by the NSF grant No CRI-1513128.

STD performance on test data

	Dev dat	a Test	data
Searched terms	Grphm. Pł	nm. Grphm.	Phnm.
IV	0.7759 0.7	7970 0.6991	0.7447
– ਯ OOV sub-word	0.4176 0.3	3808 0.2677	0.3799
୍ର OOV sub-word ଡୁ IV+OOVsub-word	0.6912 0.7	7070 0.6394	0.7042
ш ООV proxy		2706 0.2105	0.3080
IV+OOV proxy	0.6804 0.7	7005 0.6506	0.6992
IV	0.8227 0.8	8224 0.8202	0.8277
OOV sub-word ہے۔		6591 0.6777	
, N HOOVsub-word	0.7541 0.7	7546 0.7621	0.7723
OOV proxy	0.3163 0.4	4942 0.3353	0.5031
IV+OOV proxy	0.6125 0.6	6905 0.6350	0.7090

STD performance using grapheme-mapped word index

	IV	OOV	IV+00V
Graphemes	0.6991 0.dex	0.2677	0.6394
$\underline{\omega} + \text{grbn}$ -mapped index		0.4417	0.6394 0.6542
Phonemes	0 7447	0.3799	0.7042
+ grphmapped index	0.7 1 17	0.3623	0.7042 0.6895
Graphemes	, 0.8202	0.6777	0.7621 0.7436
Graphemes $\overline{\bigcirc}$ + grphmapped index		0.6260	0.7436
Phonemes ن	0 0077	0.6818	0.7723 0.7699
+ grphmapped index		0.6707	0.7699

Conclusion

- Grapheme- vs. phoneme-based models
- similar performance for Czech
- for English the grapheme-based models are slightly worse
- Performance on English improved by using the grapheme-mapped word index
- Complete elimination of the G2P algorithm from the search phase of the STD

References

Josef Psutka et al. (2011). "System for Fast Lexical and Phonetic Spoken Term Detection in a Czech Cultural Heritage Archive". EURASIP Journal on Audio, Speech, and Music Processing 2011.1, p. 10. ISSN: 1687-4722. DOI: 10.1186/1687-4722-2011-10

Jan Trmal et al. (2017). "The Kaldi OpenKWS System: Improving Low Resource Keyword Search". In: Proc. Interspeech 2017, pp. 3597-3601. DOI: 10.21437/Interspeech.2017-601

Jan Švec et al. (2017). "A Relevance Score Estimation for Spoken Term Detection Based on RNN-Generated Pronunciation Embeddings". In: Proc. Interspeech 2017, pp. 2934-2938. DOI: 10.21437/Interspeech.2017-1087