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INTRODUCTION

Motivation: The data in WBAN prevalently has both spatial and temporal
correlations at the same time. And it will obtain a superior performance when we
consider the structured spatial and temporal correlations jointly by assuming the

spatio-temporal correlated data satisfies simultaneous low-rank and joint-sparse
(L&S) structure.

The proposed method:

» We first formulate our problem and transform it into a block single
measurement problem.

» The structure of the covariance matrix of the L&S data 1s given.

» The inference problem is split into two steps: Firstly, we get initial values of
hyperparameters. Secondly, we get the optimal reconstructed data.



PROBLEM FORMULATION AND

SIGNAL MODEL

We consider a typical WBAN scenario in which there are m
sensors to collect data F = [f;,--- ,f,,]" € R™*"™ in time
synchronization, where f; € R?*1 i € 1,2, ..., m stands for
the data collected by the ith sensor and F 1s the spatially and
temporally correlated data matrix.




Gaussian likelihood:

p(y|x; A, A) ~ N, (AX,AI) O exp|
p(x; ¥, y.,B, Ui, j)~ N (0,X))

- vvB.,  nV.B,

VB, 1h),By,

_me/lel me/ZBm2

—HAX 1,03
Y y ,(3)

exp[x X

vv,B.,,

J/ZymBZm

ymymBmm_

) X1, (4)

,(3)



An example structure of the covariance matrix 2y of x with
m = 4,n = 6.
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PROPOSED ALGORITHM

Using the Bayes rule, we have the posterior density of X,

p(X\y,A,J/Z,J/],BZJ, la]) N Nx(uxazx)9(6)

1
ux — ; ZxATyD (7)

Y =X +%ATA)'1n
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MAP estimation:

n A

x=vec[X']=p, =(AX; +A'A)AX,
=X A ' (AI+AX A"y, (9)

Using a common positive definite matrix B to model all the
covariance matrices B;;, so, (5)turns into

>, = 0B, (10)
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Using Bayesian strategy
max, . [ p(y|x;A,A)p(x;T,B)dx, (12)

which 1s equivalent to minimizing the cost function

— . I v -1
L(I',B,A)=y X y+log|X, |, (13)

o= BT

— .. w1
LO)=y X y+tlog|X |, (15)

X =AY A +AI, X =I'0B.(14)



We first treat x as hidden variables in the EM formulation
proceeding and then maximize

Q(0) = E 1@ [log p(y,x;9)]

= Ex|y NS [log p(y [ x;4)] ,(16)
T E e(pre) [log p(X9 Fa B)]

where ®(P"¢) denotes the hyperparameters which have been
estimated 1n the previous iteration.

To estimate I' and B, we assume I' = diag(~v7, -+ ,72)
where diag(-) denotes a diagonal matrix operator.
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So, we can simplify the © function (16) to
Q(I.B)=E_ . [log p(x;T,B)],(17)

Then we have

O(T', B) —gloga r D—%log(\B )

1

—Etr[(F'1 B)(Z, +p.p, )] (18)




Then, we plug p,. and 3, into (18). To estimate hyper-
parameters ©, we get the gradients of (18) over 7 and B,

(pre)

respectively, and then we obtain v, ', ¢ = 1,---,m, and

B(Pr¢) . Thus, we will get I''?"¢). Using the same way, we
can get AP"¢) Finally, we get ®(?7¢). Here, A (P"¢) denotes
a initial value of A.

In order to get an exact result of ®, we employ stan-
dard upper bounds for solving (13) which known as a non-
convex optimization problem leading to an EM-like algorith-
m. For the first and second terms of £(I', B), we compute
their bounds respectively.
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Based on [9], for the first term in (13) we have

yTZ;ly < % ly—Ax [ +x' X 'x, (19)
For the second term,
log| X, [=mlog|B|+log|AA'A+X
-1
<mlog|B|+tr[B"U [+C, (20)

~1
where for the second term log| \AA " A + X, |, we use a first-
order approximation with a bias term C' to approximate it with
equality whenever the eradient satisfies
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=) B-BA/(AZ A" +A)'AB, (21)
i=1

where A = [A1,...,A,,] and A; € RP*", Finally using the
upper bounds of (19), (20) and Vg-1, we have the optimal B
in closed form as

B =argmin, tr[B™ (XX + )] +mlog|B|

= LIRKT+0, ] (22)
m
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By starting with B = B'?"®) and then iteratively comput-
ing (9), (21), and (22), we then have an estimate for B, and a
corresponding estimate for x given by (9).

We refer to this approach as L&S-bSBL algorithm
which 1s outlined 1n Algorithm 1.
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Algorithm 1 L&S-bSBL

Input: y. A;
Output: X;

procedure
Initialize
iters = 0. § = 107 %, max iteration number = 500;
assume I = diag(~7,--- ,v2);
compute I', B, A from (18);
ED — ' B..

while | X — X||2 > ddo
compute X from (9);
compute V-1 from (21);
compute B?P" from (22);
iters = iters + 1;
if iters = 500 STOP; end if

end while

Get the best BP" and X.

end procedure
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SIMULATION EXPERIMENTS

n=30, m=50, p=20, r=2
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MSE (dB)

n=30, m=50, p=20, SNR=25dB
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n=30, p=20, r=2, SNR=25dB
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Runtime (s)

n=30, p=20, r=2, SNR=25dB
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Fig. 3. (b) runtime vs m.
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Runtime (s)
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CONCLUSION

In this paper, we studied joint sparse reconstruction of
spatially and temporally correlated data in WBAN,
assuming that the signal matrix satisfies the L&S model.
We proposed an algorithm based L&S structure to recover
data using a bSBL-based algorithm. The proposed
approach presented a better performance than other two
methods through numerical results.
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