2018 IEEE International Conference on Acoustics, Speech and Signal Processing

COLOR AFFINE SUBSPACE PURSUIT FOR COLOR ARTIFACT REMOVAL

Kazuki YAMANAKA¹, Seisuke KYOCHI¹, Shunsuke ONO², Keiichiro SHIRAI³

1: The University of Kitakyushu, 2: Tokyo Institute of Technology, 3: Shinshu University

- Background
- Conventional method
- Purpose
- Proposed method
- Experimental results
- Conclusion

Background (Image restoration based on optimization)

Noise Blur Low resolution

Desired image

Background (Image restoration based on optimization)

Image restoration

Noise Blur Low resolution

Estimated image Desired image

Image restoration based on optimization

Data-fidelity Regularization $\arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{\Phi}\mathbf{x} - \mathbf{y}\|_{2}^{2} + f(\mathbf{x}) \dots (1)$ Φ Degradation process

- **x** Estimated image
- **y** Observed image

A suitable model of a prior for the desired image is important to estimate a clean image

Background (Problems of Conventional regularization)

Compression sensing [4 Chierchia+, TIP2014]

Our purpose : design efficient regularizer for color artifact removal

[1] Blomgren+, TIP1998 [2] Aharon+, TSP2006 [3] Lefkimmiatis, SIAM J.Imaging Sci., 2015.

- Background
- Conventional method
- Purpose
- Proposed method
- Experimental results
- Conclusion

Color-line property

The property that the color-distribution in the local regions of clear image forms straight line[5]

[5] Omer et. al., "Color lines: image specific color representation," CVPR2004

Local Color Nuclear Norm (LCNN) [Ono+, CVPR2013, TCI2016]

8

$$\mathbf{X}^{\star} = \operatorname*{argmin}_{\mathbf{X} \in \mathbb{R}^{3 \times N}} \frac{1}{2} \| \mathbf{\Phi}(\mathbf{X}) - \mathbf{Y} \|_{F}^{2} + \| \mathbf{X} \|_{\mathrm{LC}} \cdots (2)$$

Local Color Nuclear Norm

This regularization function promotes the local color-line property

Local Color Nuclear Norm (LCNN) [Ono+, CVPR2013, TCI2016]

Color image \mathbf{X}

The ℓ th local color-matrix

9

LCNN : Sum of all patch's (weighted) nuclear norm

$$\|\mathbf{X}\|_{ ext{LC}} = \sum_{\ell=1}^L \mu_\ell \|\mathbf{X}_\ell\|_{*,\mathbf{w}} \quad \left(\|\mathbf{X}_\ell\|_{*,\mathbf{w}} = \sum_{i=1}^3 w_i \sigma_i, \mathbf{w} = [w_1,w_2,w_3]
ight)$$

Singular Value Decomposition : $\mathbf{X}_{\ell} = \mathbf{U}_{\ell} \mathbf{\Sigma}_{\ell} \mathbf{V}_{\ell}^{\top}, (\mathbf{\Sigma}_{\ell} = \operatorname{diag}(\sigma_1, \sigma_2, \sigma_3))$

- Background
- Conventional method
- Purpose
- Proposed method
- Experimental results
- Conclusion

Problems of LCNN and Purpose of our study

Color-distributions are estimated by single low-dimensional linear subspace Problems: Color fading degradation

arises in the patches not satisfying color-line property

Proposal Our assumption: The union of <u>affine subspace</u>*property (*Straight line/plane which doesn't necessarily intersect with the origin) Color-distributions are estimated by multiple affine subspaces

- Background
- Conventional method
- Purpose
- Proposed method
- Experimental results
- Conclusion

Color artifact removal via Color affine subspace pursuit Color affine subspace pursuit: identify each affine subspaces

Color-distribution of the ℓ th patch

$$(\ell=1,\cdots,L)$$

14

Color artifact removal via Color affine subspace pursuit

Color affine subspace pursuit: identify each affine subspaces

Color artifact removal via Color affine subspace pursuit

 $B \xrightarrow{d_2} G$ $S_2 \xrightarrow{d_1} \xrightarrow{d_2} G$ $S_3 \xrightarrow{W_{\ell,1}} \xrightarrow{W_{\ell,2}} \xrightarrow{W_{\ell,3}} \xrightarrow{W_{\ell,3}} B$

$$X_{\ell} \approx W_{\ell} P_{\ell} + D_{\ell} Q_{\ell}$$
Positive
Sparse+Low-rank
Sparse+Low-rank
(Binary)
The regularization for promoting the
union of affine subspace property
$$\Gamma = (\{W_{\ell}\}, \{P_{\ell}\}, \{D_{\ell}\}, \{Q_{\ell}\})$$

$$\mathcal{R}(X, \Gamma) = \sum_{\ell=1}^{L} \lambda_{1} ||X_{\ell} - (W_{\ell}P_{\ell} + D_{\ell}Q_{\ell})||_{F}^{2}$$

$$+\lambda_{2} ||P_{\ell}||_{*} + \lambda_{3} ||P_{\ell}||_{1} + \lambda_{4} ||Q_{\ell}||_{*} + \lambda_{5} ||Q_{\ell}||_{1}$$

$$+\iota_{\mathbb{R}_{+}}(W_{\ell}) + \iota_{\mathbb{R}_{+}}(D_{\ell}) + \iota_{\{0,1\}}(Q_{\ell}) \dots (3)$$

Color-distribution of the ℓ th patch $(\ell = 1, \dots, L)$ $\mathbf{X}^{\star}, \Gamma = \underset{\mathbf{X} \in \mathbb{R}^{3 \times N}, \Gamma}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{\Phi}(\mathbf{X}) - \mathbf{Y} \|_{F}^{2} + \mathcal{R}(\mathbf{X}, \Gamma)$ $\Rightarrow \text{Untractable} \qquad 18$

***** Determine center-vectors and cluster assignment by using K-means clustering to pre-restored image

- Background
- Conventional method
- Purpose
- Proposed method
- Experimental results
- Conclusion

Experiment

Compare VTV [6] , VTV + LCNN and VTV + cLCNN in compressive sensing reconstruction

$$\mathbf{X}^{\star} = \operatorname*{argmin}_{\mathbf{X} \in \mathbb{R}^{3 \times N}} \frac{1}{2} \| \mathbf{\Phi}(\mathbf{X}) - \mathbf{Y} \|_{F}^{2} + \mathcal{R}(\mathbf{X})$$

Original Observation (256×256×3) (256×256×3) Missing rate 80% (Noiselet transform [7] + Sampling) Test images : BSDS300 [9]
Patch size: 16 × 16 × 3
Overlap : 8 pixels
(Horizontal · Vertical · Diagonal)
Number of Cluster : 3
Optimization algorithm: PDS[8]

[6] X. Bresson 2008.[7]R.Coifman+, 2001.
[8] L. Condat, 2013. [9]D. Martin+, 2001. 22

Experiment(Numerical comparison)

Table1:PSNR[dB]						
Image	Image1	Image2	Image3	Image4	Ave.	
VTV	25.58	27.56	25.65	25.42	28.00	
VTV+LCNN	26.37	28.19	26.58	26.58	29.37	
VTV+cLCNN	27.01	28.63	27.03	27.55	29.74	

Experiment(Subjective image quality comparison)

PSNR[dB]:26.58 PSNR[dB]:**27.55** dE2000:4.36 dE2000:**3.83** 24

Experiment(Subjective image quality comparison)

PSNR[dB]:26.37 PSNR[dB]:**27.01** dE2000:5.04 dE2000:**4.70** 25

- Background
- Conventional method
- Purpose
- Proposed method
- Experimental results
- Conclusion

Conclusion

Proposed method

The color artifact removal method via color affine subspace pursuit -Apply LCNN after centering each cluster of the local patch.

LCNN Color-distributions are estimated by single low-dimensional liner subspace

Restoration accuracy for each patch which forms a union of affine subspace is not good

Result

Proposed methods is superior to LCNN in the color-distribution approximate
 Both restoration error and subjective image quality were improved 27

Convex optimization Algorithm Primal-Dual Splitting Algorithm (PDS) [8]

$$\mathbf{x^{\star}} = rgmin g(\mathbf{x}) + h(\mathbf{Lx})$$
 \mathbb{R}^{N} :Real N-space $\mathbf{x} \in \mathbb{R}^{N}$

Optimum solution \mathbf{x}^{\star} is provided by bellow $\begin{bmatrix} \mathbf{x}_{k+1} := \operatorname{prox}_{\gamma_1 g} [\mathbf{x}_k - \gamma_1 \mathbf{L}^* \xi_k] \\ \xi_{k+1} := \operatorname{prox}_{\gamma_2 h^*} [\xi_k + \gamma_2 \mathbf{L} (2\mathbf{x}_{k+1} - \mathbf{x}_k)]. \end{bmatrix}$

[8] L. Condat, "A primaldual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms," in *J. Optimization Theory and Applications*, 2013.

Pre-restored image by vectorial TV $\mathbf{c}_{\text{pre}} = \underset{\mathbf{c} \in \mathbb{R}^{3N}}{\arg \min} \|\mathbf{D}\mathbf{c}\|_{1,2} \ s.t. \begin{cases} \|\mathbf{\Phi}\mathbf{c} - \mathbf{y}\| \leq \epsilon \\ \mathbf{c} \in [0,1]^{3N} \end{cases}$

- **c** :Desired image
- **Y** :Degraded image
- $\mathbf{c}_{\mathbf{pre}}$:Restored image
 - ϵ :Error margin
 - $oldsymbol{\Phi}$:The matrix which express the process of degradation
 - $\ensuremath{\mathbf{D}}$:The discrete gradient operator

$$\mathbf{D}: \mathbb{R}^{3N} \to \mathbb{R}^{6N}: \mathbf{c} \to (\mathbf{d}^{\top}\mathbf{d}_{r}^{\top})^{\top} \overset{\mathbf{d}_{v}: \text{Vertical difference of a color image.}}$$

 \mathbf{d}_h :Horizontal differences of a color image

[9] X. Bresson and T. F. Chan, "Fast dual minimization of the vectorial total variation norm and applications to color 30 image processing, "*Inverse Probl.Imag.*, vol. 2, no. 4, pp. 455–484, 2008.

Detail of our experiment

$$\mathbf{X}^{\star} = \underset{\mathbf{X} \in \mathbb{R}^{3 \times N}}{\operatorname{argmin}} \ \frac{1}{2} \| \mathbf{\Phi}(\mathbf{X}) - \mathbf{Y} \|_{F}^{2} + \lambda \mathcal{R}(\mathbf{X})$$

$\mathcal{R}(\mathbf{X})$	$\ \cdot\ _{\mathbf{VTV}}$	$\ \cdot\ _{\mathbf{VTV}}+\ \cdot\ _{\mathbf{LCNN}}$	$\ \cdot\ _{\mathbf{VTV}}+\ \cdot\ _{\mathrm{cLCNN}}$
Run time(sec)	7.27	21.19	93.53
Image size	256×256×3	256×256×3	256×256×3
Patch size	-	16×16×3	16×16×3
Overlap	-	8pixels	8pixels
$[w_1,w_2,w_3]$	-	$[0.001 \ 1 \ 1]$	$[0.001 \ 1 \ 1]$
λ	1	VTV(1), LCNN(2)	VTV(1), cLCNN(2)