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q Project purpose
• Estimate the location of a user using RSRP* and the locations of 

base stations with a DNN* structure

q Motivation
• To draw a coverage map,

- Drive test is labor-intensive and costly
- MDT* allows the automatic monitoring of the radio status of UE*
⇒ important to identify the location of the UE

• DNN is successful for modeling a non-linear relationship between 
radio signals and the user location

Introduction
q Database setup with field measurement

• Measurement environment
- 1800 MHz LTE bands

• Data rate
- Raw data: 77.01 (samples/sec)
- Data connected to three BS: 3.83 (samples/sec)

• Median distance between UE and BS
- 105.16 (m)

q Network structure

q Experiment results
• Experiment by changing the size of context window
• Experiment to compare fingerprint-based localization and DNN-based localization

Experiments
q System overview

q Feature extraction
• Data extraction

- Extract data that had three connected BS*
• DNN input features

- RSRP
- Longitude
- Latitude of the Top 1 to 3 BS
⇒ (9 x size of context window) dimensions

q Data processing
• Normalization: zero mean, unit variance

- Prevent the problem of bias to certain parameters
• Context windowing

- Use past and future features, as well as the current DNN input feature

RSRP: Reference Signal Received Power, DNN: Deep Neural Network, MDT: Minimization of Drive Tests, UE: User Equipment, RSS: Received Signal Strength, BS: Base Station, PCI: Physical Cell Id, CDF: Cumulative Distribution Function

Proposed Algorithm

Data measured in detail
(Training)

Data measured sparsely
(Test)

Database ratio
(The number of connected BS)• DNN output features

- Longitude
- Latitude of the UE
⇒ 2 dimensions

q Fingerprint-based localization
• Match geographical signatures to a map of previously measured 

signatures
• Training phase

- Create a map represented by signature vector 
such as RSRP and PCI*

• Matching phase
- Determine best matching signature by 

calculating Euclidean distance among 
the grid unit
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71.04 72.14 208.50
(0+1+0) 51.70 56.37 119.73
(1+1+1) 43.51 42.33 98.97
(2+1+2) 45.09 44.17 105.47
(3+1+3) 45.78 46.41 102.19

38.75% 41.32% 52.53%

Method

Fingerprint-based localization

DNN-based 
localization

Performance improvement

Ø Data used in those experiments were measured in a real communication field
Ø The average distance error of the proposed algorithm was reduced by 27.53 m 

in comparison to the conventional method

Conclusion
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CDF* of distance error

➠

26,061 (Samsung Galaxy S5)
22,297 (Samsung Galaxy S5)

31,511 (LG G5)

Test Data measured 
sparsely 10,875 (Samsung Galaxy S5)
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