A Simple and Effective Framework for A Priori SNR Estimation

Johannes Stahl¹, Pejman Mowlaee²

johannes.stahl@tugraz.at, pejman.mowlaee@tugraz.at

¹Signal Processing and Speech Communication Laboratory, Graz University of Technology ²Widex A/S, Nymøllevej 6, 3540 Lynge, Denmark

Abstract

FШF

Der Wissenschaftsfonds.

- The a priori SNR is key-parameter in DFT-based speech enhancement schemes
- **Decision-directed** (DD) *a priori* SNR estimation: linear combination of estimates along fixed DFT bin k.
- Can speech enhancement performance be improved by combining estimates along harmonic trajectories instead of fixed DFT bins?

Speech Enhancement

Proof-of-Concept

Noisy signal: Speech and white noise mixed at 0 dB SNR.

DFT based speech enhancement: multiplicative gain function $G(\cdot)$ Speech Estimate is obtained by

 $\hat{X}(k,\ell) = G(k,\ell,\xi(k,\ell),\zeta(k,\ell)) \cdot Y(k,\ell)$ $\boldsymbol{\zeta}(k,\ell) = \frac{|Y(k,\ell)|^2}{\sigma_d^2(k,\ell)} \dots \text{ a posteriori SNR}$ $\boldsymbol{\xi}(k,\ell) = \frac{\sigma_x^2(k,\ell)}{\sigma_d^2(k,\ell)} \dots \text{ a priori SNR}$

The Decision-Directed A Priori SNR Estimator

DD a priori SNR estimate:

 $\hat{\xi}_{\mathsf{DD}}(k,\ell) = (1 - \alpha_{\mathsf{DD}}) \max[\hat{\xi}_{\mathsf{ML}}(k,\ell),0] + \alpha_{\mathsf{DD}}\hat{\xi}_{\ell-1}(k,\ell)$

with

$$\hat{\xi}_{\mathsf{ML}}(k,\ell) = \hat{\zeta}(k,\ell) - 1$$
$$\hat{\xi}_{\ell-1}(k,\ell) = \frac{|\hat{X}(k,\ell-1)|^2}{\hat{\gamma}^2(1-\ell-1)}$$

DD:

• Spurious spectral peaks \rightarrow musical noise Harmonics are smeared along time

PADDi:

Less isolated spectral peaks Harmonic fine structure is preserved

Results (1)

Characteristics of speech estimator strongly depend on $G(\cdot)$ • We compared **DD** and **PADDi** for various $G(\cdot)$ s Evaluation: Segmental Speech to Speech Distortion Ratio (SSDR_{seg}) vs. Segmental Noise Attenuation (NA_{seg})

A A

 \times Wiener filter

$\sigma_d^2(\kappa, \ell-1)$

Is there a better choice for $\xi_{\ell-1}(k, \ell)$?

PADDi - The Proposed Method

Speech exhibits **harmonic structure** Fundamental frequency is time-varying • Main idea of this work: ensure that k is dominated similarly by the same harmonic at frames ℓ' and $\ell' - 1$ Pitch-adaptive discrete STFT (PADSTFT):

$$N_{\mathsf{DFT}}(\ell) = \operatorname{round} \left[K \frac{f_s}{f_0(\ell)} \right]$$
$$k_h(\ell) = \operatorname{argmin}_k \left| k - N_{\mathsf{DFT}}(\ell) \frac{h f_0(\ell)}{f_s} \right| = Kh$$
$$\mathsf{independent of } \ell!$$

■ PADSTFT:

path coincide

Red: harmonic trajectory Green: smoothing path of a priori SNR estimator

Fixed mapping from h to k

• LSA ∆ jMAP □ MMSE-STSA

■ PADDi increases NA_{seg} while preserving SSDR_{seg} compared to DD

Results (2)

 Δ -improvement in terms of **PESQ** and **SNR**_{seg} over noisy speech

 $\square \Delta SNR_{seg}$: PADDi brings improved or similar performance compared to benchmarks

All methods perform

similarly