

Software Defined Resource Allocation for Service-Oriented Networks

Motivation

- Today's networks must support diverse service requirements, each service consists of a predefined service function chain (SFC).
- Traditional specialized network hardware provides dedicated network services \Rightarrow it is costly and inflexible!
- Network function virtualization (NFV) [1]: intelligently integrate a variety of network resources to establish a virtual network (VN) for each request.
- Joint VN embedding and resource allocation [2, 3, 4]:
- select function nodes for service function instantiation
- route traffic such that each flow gets processed at function nodes
 in the order defined in the corresponding SFC

Main Contribution

- Perform joint VN embedding and traffic engineering for serviceoriented networks.
- Propose a novel problem formulation taking practical network constraints into consideration.
- Show NP-hardness of the formulated problem.
- Develop an efficient penalized successive upper bound minimization (PSUM) algorithm with convergence guarantee.

System Model

- Flow k shall be transmitted from S(k) to D(k) with rate $\lambda(k)$
- SFC of flow $k: \mathcal{F}(k) = (f_1^k \to \cdots \to f_n^k)$
- The set of function nodes that can provide function $f: V_f$
- Binary variable indicating whether function node *i* provides function f for flow k: $x_{i,f}(k)$
- Rate of virtual flow (k, f) over link (i, j): $r_{ij}(k, f)$

$$S(k) \operatorname{flow}(k, f_0) \operatorname{flow}(k, f_1) \operatorname{flow}(k, f_2) D(k)$$
Provide f_1
Provide f_2
Provide f_2
Provide f_2
Provide f_2
Provide f_1
Provide f_2
Provide $f_$

- Rate of flow k over link (i, j): $r_{ij}(k) = \sum_{f \in \mathcal{F}(k)} r_{ij}(k, f)$ (1)
- In order to reduce communication overhead, each flow k gets served by exactly one node for each $f \in \mathcal{F}(k)$: $\sum_{i \in V_f} x_{i,f}(k) = 1$ (2)
- Each function node provides at most one function for each flow: $\sum_{f} x_{i,f}(k) \le 1 \quad (3)$

Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, and Zhi-Quan Luo zhangnan625@pku.edu.cn, yafliu@lsec.cc.ac.cn, hamid.farmanbar@huawei.com, changtsunghui@cuhk.edu.cn, mhong@umn.edu, luozq@cuhk.edu.cn

PSUM Algorithm

- Relax binary variables $\{x_{i,f}(k)\}$ to be real and add a penalty term to the objective function:
 - $-\mathbf{x}_f(k) := (x_{i,f}(k))_{i \in V_f}$, then (2) $\Leftrightarrow \|\mathbf{x}_f(k)\|_1 = 1$
 - **Fact** [5]: For any $p \in (0, 1)$, $\epsilon > 0$, the optimal solution of the following problem must be binary:

min
$$\|\mathbf{x}_{f}(k) + \epsilon \mathbf{1}\|_{p}^{p} := \sum_{i \in V_{f}} (x_{i,f}(k) + \epsilon)^{p}$$

s.t. $\|\mathbf{x}_{f}(k)\|_{1} = 1, x_{i,f}(k) \in [0, 1], \forall i \in V_{f}$

• Penalized problem:

$$\min_{\mathbf{z}=(\mathbf{r},\mathbf{x})} \quad g_{\sigma}(\mathbf{z}) = g(\mathbf{r}) + \sigma P_{\epsilon}(\mathbf{x})$$

s.t. (1) - (9),
$$r_{ij}(k) \ge 0, r_{ij}(k, f) \ge 0, \ \forall (i, j) \in \mathcal{L},$$

$$x_{i,f}(k) \in [0, 1], \ \forall k, \ \forall f, \ \forall i,$$
 (P1)

where the penalty term:

$$P_{\epsilon}(\mathbf{x}) = \sum_{k} \sum_{f \in \mathcal{F}(k)} \|\mathbf{x}_{f}(k) + \epsilon \mathbf{1}\|_{p}^{p}.$$

- Convergence analysis: Suppose the positive sequence $\{\sigma_t\}$ is monotonically increasing and $\sigma_t \to +\infty$, and \mathbf{z}^t is a global minimizer of the penalized problem (P1) with the objective function $g_{\sigma_t}(\mathbf{z})$. Then any limit point of $\{z^t\}$ is a global minimizer of problem (P).
- Successive Upper bound Minimization (SUM) [6]: solve a sequence of approximate objective functions which are lower bounded by $g_{\sigma}(\mathbf{z})$:

$$P_{\epsilon}(\mathbf{x}) \leq P_{\epsilon}(\mathbf{x}^{t}) + \nabla P_{\epsilon}(\mathbf{x}^{t})^{T}(\mathbf{x} - \mathbf{x}^{t})$$

• **PSUM subproblem** at the (t + 1)-th iteration:

$$\min_{\mathbf{r},\mathbf{x}} \quad g(\mathbf{r}) + \sigma_{t+1} \nabla P_{\epsilon_{t+1}}(\mathbf{x}^t)^T \mathbf{x}$$

s.t. (1) - (9),
$$r_{ij}(k) \ge 0, r_{ij}(k, f) \ge 0, \ \forall (i, j) \in \mathcal{L},$$

$$x_{i,f}(k) \in [0, 1], \ \forall k, \ \forall f, \ \forall i,$$
 (PSUM_sub)

where $\sigma_{t+1} = \gamma \sigma_t$, $\epsilon_{t+1} = \eta \epsilon_t$.

- PSUM-R: combine PSUM with a Rounding technique
 - 1. Perform t_{\max} PSUM iterations to obtain $\{(\bar{x}_{i,f}(k))_{i \in V_x}\};$
 - 2. For nonbinary $\bar{\mathbf{x}}_{f}(k)$: if $\bar{x}_{j,f}(k) = \max_{i \in V_{f}} \bar{x}_{i,f}(k) \ge \theta$, then set $x_{i,f}(k) = 1$; otherwise find the node $v \in V_f$ with the maximum remaining computational capacity and set $x_{v,f}(k) = 1$;
 - 3. Determine \mathbf{r} : solve (P) with \mathbf{x} being fixed and the objective function being $g + \tau \Delta$, and modify (4) by $\sum_k r_{ij}(k) \leq C_{ij} + \Delta$.

Simulation Results

- Simulation scenario: a mesh network
 - -100 nodes and 684 direct links
 - 5 service functions, $|V_f| = 10$ candidate nodes for each function
 - $-\mathcal{F}(k) = (f_1^k \to f_2^k)$ and (S(k), D(k)) are uniformly randomly chosen for each flow $(f_1^k \neq f_2^k, S(k), D(k) \notin V_{f_s^k}, s = 1, 2)$
 - Parameter setting: $C_{ij} \sim [0.5, 5.5], \ \mu_i \sim [0.5, 8], \ K =$ $30, \lambda(k) = 1, \forall k$
- Compare with the modified heuristic algorithm in [3].
- Parameters setting: $T_{\text{max}} = 20, \ \sigma_1 = 2, \ \epsilon_1 = 0.001, \ \gamma = 1.1, \ \eta = 1.1$ 0.5, $t_{\rm max} = 7$, $\theta = 0.9$, $\tau = 5$.
- Randomly generate 50 instances of problem (P).

Left: the averaged number of fractional components varies with iterations; Right: the number of simulations with $g^*_{\text{PSUM}}/g^*_{\text{LP}} \leq \xi$ varies with ξ .

- The solutions returned by PSUM gradually converge to some feasible binary solutions.
- In 50 simulations, PSUM and PSUM-R successfully find the feasible solution 48 times while the heuristic algorithm only succeeds 9 times.
- **PSUM** can approximately solve problem (P) by returning a feasible solution with good quality and is easily implemented.
- PSUM-R achieves a good balance of solution quality and algorithm efficiency.

References

- [1] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger et al. Network Functions Virtualization: Introductory White Paper. SDN and OpenFlow World Congress, Darmstadt, Germany, Oct.
- [2] H. Zhang, S. Vrzic, G. Senarath, N. D. Dào, H. Farmanbar, J. Rao, C. Peng, and H. Zhuang. 5G Wireless Network: MyNET and SONAC. *IEEE Network*, vol. 29, no. 4, pp. 14–23, Jul. 2015. [3] X. Li, J. Rao, and H. Zhang. Engineering Machine-to-Machine Traffic in 5G. IEEE Internet of
- Things Journal, vol. 3, no. 4, pp. 609–618, Aug. 2016.
- [4] M. Charikar, Y. Naamad, J. Rexford, and X. K. Zou. Multi-commodity Flow with In-network Processing. *Manuscript*, www.cs.princeton.edu/~jrex/papers/mopt14.pdf.
- [5] B. Jiang, Y.-F. Liu, and Z. Wen, Lp-norm regularization algorithms for optimization over permutation matrices. SIAM Journal on Optimization, vol. 26, no. 4, pp. 2284–2313, 2016.
- M. Razaviyayn, M. Hong, and Z.-Q. Luo. A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization. SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–1153, 2013.