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Motivation

• Today’s networks must support diverse service requirements,
each service consists of a predefined service function chain (SFC).

• Traditional specialized network hardware provides dedicated network
services ⇒ it is costly and inflexible!

• Network function virtualization (NFV) [1]: intelligently integrate a
variety of network resources to establish a virtual network (VN) for
each request.

• Joint VN embedding and resource allocation [2, 3, 4]:
� select function nodes for service function instantiation
� route traffic such that each flow gets processed at function nodes

in the order defined in the corresponding SFC

Main Contribution

• Perform joint VN embedding and traffic engineering for service-
oriented networks.

• Propose a novel problem formulation taking practical network con-
straints into consideration.

• Show NP-hardness of the formulated problem.

• Develop an efficient penalized successive upper bound minimization
(PSUM) algorithm with convergence guarantee.

System Model

• Flow k shall be transmitted from S(k) to D(k) with rate λ(k)

• SFC of flow k: F(k) = (fk1 → · · · → fkn)

• The set of function nodes that can provide function f : Vf

• Binary variable indicating whether function node i provides function
f for flow k: xi,f (k)

• Rate of virtual flow (k, f) over link (i, j): rij(k, f)

• Rate of flow k over link (i, j): rij(k) =
∑

f∈F(k) rij(k, f) (1)

• In order to reduce communication overhead, each flow k gets served
by exactly one node for each f ∈ F(k):

∑
i∈Vf xi,f (k) = 1 (2)

• Each function node provides at most one function for each flow:∑
f xi,f (k) ≤ 1 (3)

System Model (Cont.)

• Link capacity constraint:
∑

k rij(k) ≤ Cij (4)

• Node capacity constraint:
∑

k

∑
f xi,f (k)λ(k) ≤ µi (5)

• Network flow conservation constraints:

λ(k)xi,fks (k) =
∑

j:(j,i)∈L

rji(k, f
k
s−1)−

∑
j:(i,j)∈L

rij(k, f
k
s−1) (6)

λ(k)xi,fks (k) =
∑

j:(i,j)∈L

rij(k, f
k
s )−

∑
j:(j,i)∈L

rji(k, f
k
s ) (7)

∑
j:(S(k),j)∈L

rS(k)j(k, f
k
0 ) = λ(k) (8)

∑
j:(j,D(k))∈L

rjD(k)(k, f
k
n) = λ(k) (9)

Problem Formulation and Analysis

min
r,x

g(r) :=
∑
k

∑
(i,j)

rij(k)

s.t. (1)− (9),

rij(k) ≥ 0, rij(k, f) ≥ 0, ∀ (i, j) ∈ L,
xi,f (k) ∈ {0, 1}, ∀ k, ∀ f, ∀ i.

(P)

• Joint VN embedding and resource allocation

• The total link rate objective avoids cycles in choosing routing paths.

• The problem of checking the feasibility of (P) is NP-hard (Proved).

• Suppose µi ≥ µ̄ for all i, and Cij ≥ C̄ for all (i, j), where

µ̄ =
K∑
k=1

λ(k), C̄ =
K∑
k=1

λ(k)(|F(k)|+ 1), (10)

and |F(k)| denotes the number of functions in F(k). Then the LP
relaxation of problem (P) always has a binary solution of {xi,f (k)}.

• The above result suggests that, if the link and node capacity are suf-
ficiently large, then problem (P) and its LP relaxation are equivalent.

• The above lower bounds in (10) are tight.

PSUM Algorithm

• Relax binary variables {xi,f (k)} to be real and add a penalty term
to the objective function:

– xf (k) := (xi,f (k))i∈Vf , then (2) ⇔ ‖xf (k)‖1 = 1

– Fact [5]: For any p ∈ (0, 1), ε > 0, the optimal solution of the
following problem must be binary:

min ‖xf (k) + ε1‖pp :=
∑
i∈Vf

(xi,f (k) + ε)p

s.t. ‖xf (k)‖1 = 1, xi,f (k) ∈ [0, 1], ∀ i ∈ Vf .

• Penalized problem:

min
z=(r,x)

gσ(z) = g(r) + σPε(x)

s.t. (1)− (9),

rij(k) ≥ 0, rij(k, f) ≥ 0, ∀ (i, j) ∈ L,
xi,f (k) ∈ [0, 1], ∀ k, ∀ f, ∀ i,

(P1)

where the penalty term:

Pε(x) =
∑
k

∑
f∈F(k)

‖xf (k) + ε1‖pp.

• Convergence analysis: Suppose the positive sequence {σt} is mono-
tonically increasing and σt → +∞, and zt is a global minimizer of
the penalized problem (P1) with the objective function gσt(z). Then
any limit point of {zt} is a global minimizer of problem (P).

• Successive Upper bound Minimization (SUM) [6]: solve a sequence
of approximate objective functions which are lower bounded by gσ(z):

Pε(x) ≤ Pε(x
t) +∇Pε(xt)T (x− xt)

• PSUM subproblem at the (t+ 1)-th iteration:

min
r,x

g(r) + σt+1∇Pεt+1(x
t)Tx

s.t. (1)− (9),

rij(k) ≥ 0, rij(k, f) ≥ 0, ∀ (i, j) ∈ L,
xi,f (k) ∈ [0, 1], ∀ k, ∀ f, ∀ i,

(PSUM sub)

where σt+1 = γσt, εt+1 = ηεt.

• PSUM-R: combine PSUM with a Rounding technique

1. Perform tmax PSUM iterations to obtain {
(
x̄i,f (k)

)
i∈Vf
};

2. For nonbinary x̄f (k): if x̄j,f (k) = maxi∈Vf x̄i,f (k) ≥ θ, then set
xj,f (k) = 1; otherwise find the node v ∈ Vf with the maximum
remaining computational capacity and set xv,f (k) = 1;

3. Determine r: solve (P) with x being fixed and the objective
function being g+τ∆, and modify (4) by

∑
k rij(k) ≤ Cij +∆.

Simulation Results

• Simulation scenario: a mesh network

– 100 nodes and 684 direct links

– 5 service functions, |Vf | = 10 candidate nodes for each function

– F(k) = (fk1 → fk2 ) and (S(k), D(k)) are uniformly randomly
chosen for each flow (fk1 6= fk2 , S(k), D(k) /∈ Vfks , s = 1, 2)

– Parameter setting: Cij ∼ [0.5, 5.5], µi ∼ [0.5, 8], K =
30, λ(k) = 1, ∀ k

• Compare with the modified heuristic algorithm in [3].

• Parameters setting: Tmax = 20, σ1 = 2, ε1 = 0.001, γ = 1.1, η =
0.5, tmax = 7, θ = 0.9, τ = 5.

• Randomly generate 50 instances of problem (P).
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Left: the averaged number of fractional components varies with iterations;

Right: the number of simulations with g∗PSUM/g
∗
LP ≤ ξ varies with ξ.

• The solutions returned by PSUM gradually converge to some feasible
binary solutions.

• In 50 simulations, PSUM and PSUM-R successfully find the feasible
solution 48 times while the heuristic algorithm only succeeds 9 times.

• PSUM can approximately solve problem (P) by returning a feasible
solution with good quality and is easily implemented.

• PSUM-R achieves a good balance of solution quality and algorithm
efficiency.
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