

DEEP CNN BASED FEATURE EXTRACTION FOR TEXT-PROMPTED SPEAKER RECOGNITION

ITMO UNIVERSITY Sergey Novoselov^{1,2}, Oleg Kudashev², Vadim Shchemelinin¹ Ivan Kremnev³, Galina Lavrentyeva¹

¹ITMO University, St. Petersburg, Russia; ²STC-innovations Ltd., St. Petersubrg, Russia; ³STC Ltd., St. Petersubrg, Russia

{novoselov, kudashev, shchemelinin, kremnev, lavrentyeva}@speechpro.com

3

Introduction

- **Text-dependent** speaker recognition task [1,2,3,4] is studied
- **Deep convolutional neural network** based speaker specific features extractor in the text-prompted speaker verification task is presented
- The prompted **passphrase is segmented into word states** i.e. digits to test each digit utterance separately
- A single high-level feature extractor for all states is used and cosine similarity metric is applied for scoring

Convolutional Neural Network

Input features are processed with a CNN embedding extractor

SoftMax	
FC2	
MFM6	
FC1	
MaxPool4	•
MFM5b	
Conv5b	
MFM5a	
Conv5a	

Multitask learning scheme is used to train the high-level feature extractor

Input features for the CNN are $64 \times 96 \log$ mel power spectra:

- 64 frequency bands \bullet
- 96 frames (longest single digit utterance) \bullet
- Voice activity detector removes non-speech frames \bullet

5 Experiments

We explored 5-digit password verification scenario when the speaker pronounces the correct passphrase. Training/evaluation bases consist of short digit passphrases

Training Datasets:

- **RSR2015**^[1] **Part 3 train set** : 194 speakers (94 Female + 100 Male) $RSR2015_{tr}$
- Wells Fargo Bank set: 300 speakers (150 Female + 150 Male) WF \bullet
- **STC-Russian-digits train set**: 786 speakers (263 Female + 523 Male) STCRus_{tr}

Evaluation Datasets:

- **RSR2015 Part 3 eval set** : 106 speakers (49 Female + 57 Male) $RSR2015_{ev}$
- **STC-Russian-digits eval set**: 92 speakers (42 Female + 50 Male) STCRus_{ev}

Results

Table 1. EER [%] and minDCF ($C_{miss} = 10$, $C_{fa} = 1$, $P_{tar} = 10^{-2}$) for 5-digit password verification

System	Multi-Task	Training data	Evaluation	EER	Min
	mode		data	(%)	DCF
Baseline State-GMM- SVM ^[2]	None	$RSR2015_{tr} + WF$		3.11	0.14
	None	$RSR2015_{ev}$	7.83	0.39	
				5.12	0.25
	Speaker & Digits	$RSR2015_{tr} + WF$		4.27	0.2
State-CNN		STCRus _{tr}	STCRus _{ev}	5.86	0.29
	Speaker & Digits	RSR2015 _{tr}	RSR2015 _{ev}	2.85	0.13
	& Language	+WF+STCRus _{tr}	STCRus _{ev}	4.24	20.45
usion r	esults	Ta fo	able 2. Fusion. EER [% or 5-digit password ve] and m rificatio	inDCF n
Systems description:			System	EER	Min
State-GMM- Viterbi segm	SVM ^[2] : entation, state superv ased scoring. S-norm	ector extraction,	State-CNN + StatePLDA	2.09	0.1
State-GMM- Viterbi segm	PLDA ^[3] : entation, state superv	ector extraction,	State-CNN + State-GMM-SVM	1.63	0.07
state TV space State-CNN:	ce transform, state PL	State-CNN + State-GMM-SVM	1.57	0.08	
Viterbi segm	entation, state CNN de	All	1.43	0.07	

N_{speakers} neurons at softmax layer

Multi-task

speakers

- Extractor is trained to discriminate speakers and word states
- $N_{speakers} \times N_{digits}$ neurons at softmax layer

Conclusions

- A deep CNN based speaker feature extractor for speech digits is presented
- Multitask learning mode allows to train effective high-level speaker embeddings extractor for all states (digits)
- Discriminatively trained deep CNN based solution is able to surpass the classic baseline systems in terms of quality
- No complex trainable backend is needed for scoring. Speaker embeddings can be

compared simply with cosine similarity metric

CNN-based method fuses well with our previous methods [2,3]

References

- 1. A. Larcher, Kong A. Lee, B. Ma, and H.Li, "RSR2015: Database for text-dependent speaker verification using multiple pass-phrases," in Thirteenth Annual Conference of the ISCA, 2012
- 2. S. Novoselov, T. Pekhovsky, A. Shulipa, and A. Sholokhov, "Text-dependent GMM-JFA system for password based speaker verification," in 2014 IEEE ICASSP. IEEE, 2014, pp. 729–737.
- 3. S. Novoselov, T. Pekhovsky, A. Shulipa, and O. Kudashev, "PLDA-based system for text-prompted password speaker verification," in AVSS, 2015 12th IEEE International Conference on, pp. 1–5.
- 4. H. Zeinali, L.Burget, H. Sameti, O. Glembek, and O. Plchot, "Deep neural networks and hidden Markov models in i-vector-based text-dependent speaker verification," in Odyssey-2016, pp. 24–30.

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Russian Federation, Contract 14.578.21.0189 (ID RFMEFI57816X0189).

