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1 
Introduction 

2 
Features 
Viterbi segmentation to word states 

 

• Text-dependent speaker recognition task [1,2,3,4] is studied 

• Deep convolutional neural network based  speaker specific features extractor 

in the text-prompted speaker verification task is presented 

• The prompted passphrase is segmented into word states —i.e. digits — to 

test each digit utterance separately 

• A single high-level feature extractor for all states is used  and cosine 

similarity metric  is applied for scoring 

• Multitask learning scheme is used to train the high-level feature extractor 
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Viterbi segmentation 

Input features  for the CNN are Ͷ × 9 log mel  power spectra: 

• 64 frequency bands 

• 96 frames (longest single digit utterance) 

• Voice activity detector removes non-speech frames 

5 
Experiments 

We explored 5-digit password verification scenario when the speaker pronounces  

the correct passphrase. Training/evaluation bases consist of short digit passphrases  

Training Datasets:  

• RSR2015 [1] Part 3 train set : 194 speakers  (94 Female + 100 Male)  - ܴܴܵʹͲͳͷ௧ 

• Wells Fargo Bank set: 300 speakers  (150 Female + 150 Male) – 𝑊𝐹 

• STC-Russian-digits train set: 786 speakers (263 Female + 523 Male) – ܵܶ𝐶ܴ𝑢𝑠௧ 

Evaluation Datasets:  

• RSR2015 Part 3 eval set : 106 speakers  (49 Female + 57 Male) - ܴܴܵʹͲͳͷ𝑣 

• STC-Russian-digits eval set: 92 speakers (42 Female + 50 Male) - ܵܶ𝐶ܴ𝑢𝑠𝑣 

System Multi-Task 

mode 

Training data Evaluation 

data 

EER 

(%) 

Min 

DCF 

Baseline 

State-GMM-

SVM[2] 

None ܴܴܵʹͲͳͷ௧ +𝑊𝐹 ܴܴܵʹͲͳͷ𝑣 

3.11 0.14 

State-CNN 

None ܴܴܵʹͲͳͷ௧ 
7.83 0.39 

Speaker & Digits 

5.12 0.25 ܴܴܵʹͲͳͷ௧ +𝑊𝐹 4.27 0.2 ܵܶ𝐶ܴ𝑢𝑠௧ ܵܶ𝐶ܴ𝑢𝑠𝑣 5.86 0.29 

Speaker & Digits 

& Language 

ܴܴܵʹͲͳͷ௧ 

+𝑊𝐹+ܵܶ𝐶ܴ𝑢𝑠௧ 

ܴܴܵʹͲͳͷ𝑣 2.85 0.13 ܵܶ𝐶ܴ𝑢𝑠𝑣 4.24 20.45 

System  EER 

(%) 

Min

DCF 

State-CNN + 

StatePLDA 
2.09 0.1 

State-CNN +  

State-GMM-SVM 
1.63 0.07 

State-CNN +  

State-GMM-SVM 
1.57 0.08 

All 1.43 0.07 

Results 

Fusion results 
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3 
Convolutional Neural Network 

• Max Feature Mapping (MFM) reduces dimensionality and selects features 

• Pre-softmax layer produces speaker embeddings 

• Last dense layers are included only during training 

Max Feature 

Mapping 

Input features are processed with a CNN embedding extractor 

Features Conv2D 

𝐻 ×𝑊 ×𝑁 
�ʹ� × �ʹ� × �ʹ� 

Learning mode 
4 

Single-task 

Multi-task 

Max Feature Mapping 

𝐻 ×𝑊 × �ʹ� 

𝐻 ×𝑊 × �ʹ� 

𝐻 ×𝑊 × �ʹ� 

MaxPool 

Speaker embedding 

Softmax 

Speaker 

1 

Speaker 

3 

Speaker 

2 

Speaker 𝑁 

• Extractor is trained to discriminate 

speakers 

 

• 𝑁௦𝑝𝑎𝑘௦ neurons at softmax layer 

• Extractor is trained to 

discriminate speakers and word 

states 

 

• 𝑁௦𝑝𝑎𝑘௦ × 𝑁ௗ𝑖𝑖௧௦ neurons at 

softmax layer 

Speaker embedding 

Softmax 

Speaker classes 
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• A deep CNN based speaker feature extractor for speech digits is presented 

• Multitask learning mode allows to train effective high-level speaker embeddings 

extractor for all states (digits) 

• Discriminatively trained  deep CNN based solution is able to surpass the classic baseline 

systems in terms of quality 

• No complex trainable backend is needed for scoring. Speaker embeddings can be 

compared simply with cosine similarity metric 

• CNN-based method fuses well with our previous methods [2,3] 
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Table 1. EER [%] and minDCF (𝐶𝑚𝑖௦௦ = ͳͲ, 𝐶𝑎 = ͳ, 𝑃௧𝑎 = ͳͲ−2) for 5-digit password verification 

Table 2. Fusion. EER [%] and minDCF  

for 5-digit password verification 

Systems description:  

State-GMM-SVM [2]:  

Viterbi segmentation, state supervector  extraction, 

state SVM based scoring, S-norm 

State-GMM-PLDA [3]:  

Viterbi segmentation, state supervector extraction, 

state TV space transform, state PLDA scoring 

State-CNN:  

Viterbi segmentation, state CNN deep speaker 

embedding extraction,  cosine based scoring 
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