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Abstract

In non-linear autoregressive models, the time dependency of
coefficients is often driven by a particular time-series which is not
given and thus has to be estimated from the data.

the driver as a weighted sum of potential drivers, we use
linear autoregressive model with a polynomial paramete

driver, outperforming a typical grid-search on predefined

describe phase-amplitude couplings.

To allow model evaluation on a validation set, we describe a
parametric approach for such driver estimation. After esti

mating
It in a non-

rization.

filters.

We apply this method on electrophysiological signals to better

Using gradient descent, we optimize the linear filter extracting the
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1. Driven autoregressive (DAR) models
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Linear AR model

Driven AR model, with a polynomial parametrization
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Maximum likelihood estimate (MLE) :
o Linear system for the AR coefficients a;;
o Newton-Raphson forthe gain coefficients b,

We parameterize the driver as a weighted sum:
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We derive the gradient of the log-likelihood:
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As a special case, we use delayed versions of an
exogenous signal containing the driver:

r,(t)=2(t—m) —-M < n<M

The weighted sum thus corresponds to a linear filter,
that we learn from the data with a gradient descent.

Performances can be evaluated with the model
likelihood, through cross-validation.

4, Phase-amplitude coupling

'tis acoupling Detween:
o The phase of a slow oscillation
o Theamplitude of high frequencies
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Bl Best in gradient descent
B Best in grid search

Simulations with unimodal power spectral density (PSD) drivers:
The gradient descent strategy reaches the same performa

nces as the grid search.

B Iowpass filter
Linear AR
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Simulations with bimodal power spectral density (PSD) drivers:
The gradient descent strategy outperforms the grid search strategy.
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5. Human auditory electrocorticogram (ECoG)

“better extracts an asymmetrical spectral shape of the driver.
is also observed in the grid-search, since the minimum shifts to the
right as the bandwidth increases.
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