

Potential-field-based active exploration for acoustic simultaneous localization and mapping

ICASSP 2018

Christopher Schymura, Dorothea Kolossa April 19, 2018

RUHR-UNIVERSITÄT BOCHUM

RUB

Outline

- 2 Acoustic SLAM
- 3 Potential-field-based exploration

4 Evaluation

RUHR-UNIVERSITÄT BOCHUM

RUB

Outline

- 2 Acoustic SLAM
- **3** Potential-field-based exploration
- 4 Evaluation

Introduction

Problem setting

- Acoustic SLAM aims at creating a map of acoustic sources within the environment of a moving microphone array (e.g. a robot).
- The position/trajectory of the acoustic sensors in the map is not known a-priori and has to be estimated from measurements.
- Question: can the motion trajectory of the acoustic sensors be controlled to improve map quality w.r.t. localization accuracy?

Introduction

Problem setting

- Acoustic SLAM aims at creating a map of acoustic sources within the environment of a moving microphone array (e.g. a robot).
- The position/trajectory of the acoustic sensors in the map is not known a-priori and has to be estimated from measurements.
- Question: can the motion trajectory of the acoustic sensors be controlled to improve map quality w.r.t. localization accuracy?

Introduction

Problem setting

- Acoustic SLAM aims at creating a map of acoustic sources within the environment of a moving microphone array (e.g. a robot).
- The position/trajectory of the acoustic sensors in the map is not known a-priori and has to be estimated from measurements.
- Question: can the motion trajectory of the acoustic sensors be controlled to improve map quality w.r.t. localization accuracy?

Introduction

Problem setting

- Acoustic SLAM aims at creating a map of acoustic sources within the environment of a moving microphone array (e.g. a robot).
- The position/trajectory of the acoustic sensors in the map is not known a-priori and has to be estimated from measurements.
- Question: can the motion trajectory of the acoustic sensors be controlled to improve map quality w.r.t. localization accuracy?

Some recent approaches to active exploration in robot audition

- Information-based one-step look-ahead control for binaural localization¹.
- Monte Carlo exploration for sound source localization on a mobile robot².
- Multi-step ahead control based on Monte Carlo tree search³.

- Full acoustic SLAM problem with multiple sources.
- Reduction of computational demands (e.g. real-time capabilities).

¹Bustamante et al. (2016): "Towards information-based feedback control for binaural active localization" ²Schymura et al. (2017): "Monte Carlo exploration for active binaural localization"

³Nguyen et al. (2017): "Long-term robot motion planning for active sound source localization with Monte Carlo tree search"

Some recent approaches to active exploration in robot audition

- Information-based one-step look-ahead control for binaural localization¹.
- Monte Carlo exploration for sound source localization on a mobile robot².
- Multi-step ahead control based on Monte Carlo tree search³.

- Full acoustic SLAM problem with multiple sources.
- Reduction of computational demands (e.g. real-time capabilities).

¹Bustamante et al. (2016): "Towards information-based feedback control for binaural active localization" ²Schymura et al. (2017): "Monte Carlo exploration for active binaural localization" ³Nguyen et al. (2017): "Long-term robot motion planning for active sound source localization with Monte Carlo tree search"

Some recent approaches to active exploration in robot audition

- Information-based one-step look-ahead control for binaural localization¹.
- Monte Carlo exploration for sound source localization on a mobile robot².
- Multi-step ahead control based on Monte Carlo tree search³.

- Full acoustic SLAM problem with multiple sources.
- Reduction of computational demands (e.g. real-time capabilities).

¹Bustamante et al. (2016): "Towards information-based feedback control for binaural active localization" ²Schymura et al. (2017): "Monte Carlo exploration for active binaural localization"

³Nguyen et al. (2017): "Long-term robot motion planning for active sound source localization with Monte Carlo tree search"

Some recent approaches to active exploration in robot audition

- Information-based one-step look-ahead control for binaural localization¹.
- Monte Carlo exploration for sound source localization on a mobile robot².
- Multi-step ahead control based on Monte Carlo tree search³.

- Full acoustic SLAM problem with multiple sources.
- Reduction of computational demands (e.g. real-time capabilities).

¹Bustamante et al. (2016): "Towards information-based feedback control for binaural active localization" ²Schymura et al. (2017): "Monte Carlo exploration for active binaural localization"

³Nguyen et al. (2017): "Long-term robot motion planning for active sound source localization with Monte Carlo tree search"

Some recent approaches to active exploration in robot audition

- Information-based one-step look-ahead control for binaural localization¹.
- Monte Carlo exploration for sound source localization on a mobile robot².
- Multi-step ahead control based on Monte Carlo tree search³.

- Full acoustic SLAM problem with multiple sources.
- Reduction of computational demands (e.g. real-time capabilities).

¹Bustamante et al. (2016): "Towards information-based feedback control for binaural active localization" ²Schymura et al. (2017): "Monte Carlo exploration for active binaural localization"

³Nguyen et al. (2017): "Long-term robot motion planning for active sound source localization with Monte Carlo tree search"

Some recent approaches to active exploration in robot audition

- Information-based one-step look-ahead control for binaural localization¹.
- Monte Carlo exploration for sound source localization on a mobile robot².
- Multi-step ahead control based on Monte Carlo tree search³.

- Full acoustic SLAM problem with multiple sources.
- Reduction of computational demands (e.g. real-time capabilities).

¹Bustamante et al. (2016): "Towards information-based feedback control for binaural active localization" ²Schymura et al. (2017): "Monte Carlo exploration for active binaural localization"

³Nguyen et al. (2017): "Long-term robot motion planning for active sound source localization with Monte Carlo tree search"

Some recent approaches to active exploration in robot audition

- Information-based one-step look-ahead control for binaural localization¹.
- Monte Carlo exploration for sound source localization on a mobile robot².
- Multi-step ahead control based on Monte Carlo tree search³.

- Full acoustic SLAM problem with multiple sources.
- Reduction of computational demands (e.g. real-time capabilities).

¹Bustamante et al. (2016): "Towards information-based feedback control for binaural active localization" ²Schymura et al. (2017): "Monte Carlo exploration for active binaural localization"

³Nguyen et al. (2017): "Long-term robot motion planning for active sound source localization with Monte Carlo tree search"

RUHR-UNIVERSITÄT BOCHUM

RUB

Outline

1 Introduction

3 Potential-field-based exploration

4 Evaluation

Acoustic SLAM

Overview

SLAM model is based on a conventional nonlinear state-space representation with additive Gaussian noise.

SLAM system state:

Motion dynamics:

$$\boldsymbol{r}_k = f(\boldsymbol{r}_{k-1}, \boldsymbol{u}_k) + \boldsymbol{v}_k, \quad \boldsymbol{v}_k \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{Q}_k)$$

Measurement model:

$$y_k^{(n)} = h(\mathbf{r}_k, \mathbf{s}_n) + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k)$$

×sß

Acoustic SLAM

Overview

SLAM model is based on a conventional nonlinear state-space representation with additive Gaussian noise.

 $\bigwedge^{r_k} \times s$

×\$2

Motion dynamics:

$$\boldsymbol{r}_k = f(\boldsymbol{r}_{k-1}, \boldsymbol{u}_k) + \boldsymbol{v}_k, \quad \boldsymbol{v}_k \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{Q}_k)$$

Measurement model:

$$y_k^{(n)} = h(\mathbf{r}_k, \mathbf{s}_n) + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k)$$

×

Acoustic SLAM

×sa

Overview

SLAM model is based on a conventional nonlinear state-space representation with additive Gaussian noise.

SLAM system state:

Motion dynamics:

$$\boldsymbol{r}_k = f(\boldsymbol{r}_{k-1}, \boldsymbol{u}_k) + \boldsymbol{v}_k, \quad \boldsymbol{v}_k \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{Q}_k)$$

Measurement model:

$$y_k^{(n)} = h(\mathbf{r}_k, \mathbf{s}_n) + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k)$$

×

Acoustic SLAM

Overview

SLAM model is based on a conventional nonlinear state-space representation with additive Gaussian noise.

Tk

×s>

SLAM system state:

Motion dynamics:

$$\boldsymbol{r}_k = f(\boldsymbol{r}_{k-1}, \boldsymbol{u}_k) + \boldsymbol{v}_k, \quad \boldsymbol{v}_k \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{Q}_k)$$

Measurement model:

$$y_k^{(n)} = h(\mathbf{r}_k, \mathbf{s}_n) + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k)$$

×

Acoustic SLAM

State estimation and map management

- Only direction-of-arrival (DoA) measurements $y_k^{(n)}$ available. Inverse depth parameterization for source states is used.⁴
- State estimation is performed recursively using an unscented Kalman filter.
 - Each update yields estimates of the posterior mean \hat{x}_k and covariance matrix $\hat{\mathcal{D}}_k$ of the SLAM system state.
 - Computationally efficient.
- Initialization of new source positions based on maximum likelihood data association framework.
- Deletion of unreliable source position estimates from the map using the log-odds ratio method⁵.

⁴Civera et al. (2008): "Inverse Depth Parametrization for Monocular SLAM"

⁵Montemerlo et al. (2003): "Simultaneous localization and mapping with unknown data association using FastSLAM"

Acoustic SLAM

State estimation and map management

- Only direction-of-arrival (DoA) measurements $y_k^{(n)}$ available. Inverse depth parameterization for source states is used.⁴
- State estimation is performed recursively using an unscented Kalman filter.
 - Each update yields estimates of the posterior mean \hat{x}_k and covariance matrix $\hat{\mathcal{D}}_k$ of the SLAM system state.
 - Computationally efficient.
- Initialization of new source positions based on maximum likelihood data association framework.
- Deletion of unreliable source position estimates from the map using the log-odds ratio method⁵.

⁴Civera et al. (2008): "Inverse Depth Parametrization for Monocular SLAM"

Acoustic SLAM

State estimation and map management

- Only direction-of-arrival (DoA) measurements $y_k^{(n)}$ available. Inverse depth parameterization for source states is used.⁴
- State estimation is performed recursively using an unscented Kalman filter.
 - Each update yields estimates of the posterior mean \hat{x}_k and covariance matrix $\hat{\mathcal{D}}_k$ of the SLAM system state.
 - Computationally efficient.
- Initialization of new source positions based on maximum likelihood data association framework.
- Deletion of unreliable source position estimates from the map using the log-odds ratio method⁵.

⁴Civera et al. (2008): "Inverse Depth Parametrization for Monocular SLAM"

Acoustic SLAM

State estimation and map management

- Only direction-of-arrival (DoA) measurements $y_k^{(n)}$ available. Inverse depth parameterization for source states is used.⁴
- State estimation is performed recursively using an unscented Kalman filter.
 - Each update yields estimates of the posterior mean \hat{x}_k and covariance matrix $\hat{\Sigma}_k$ of the SLAM system state.
 - Computationally efficient.
- Initialization of new source positions based on maximum likelihood data association framework.
- Deletion of unreliable source position estimates from the map using the log-odds ratio method⁵.

⁴Civera et al. (2008): "Inverse Depth Parametrization for Monocular SLAM"

Acoustic SLAM

State estimation and map management

- Only direction-of-arrival (DoA) measurements $y_k^{(n)}$ available. Inverse depth parameterization for source states is used.⁴
- State estimation is performed recursively using an unscented Kalman filter.
 - Each update yields estimates of the posterior mean \hat{x}_k and covariance matrix $\hat{\Sigma}_k$ of the SLAM system state.
 - Computationally efficient.
- Initialization of new source positions based on maximum likelihood data association framework.
- Deletion of unreliable source position estimates from the map using the log-odds ratio method⁵.

⁴Civera et al. (2008): "Inverse Depth Parametrization for Monocular SLAM"

Acoustic SLAM

State estimation and map management

- Only direction-of-arrival (DoA) measurements $y_k^{(n)}$ available. Inverse depth parameterization for source states is used.⁴
- State estimation is performed recursively using an unscented Kalman filter.
 - Each update yields estimates of the posterior mean \hat{x}_k and covariance matrix $\hat{\Sigma}_k$ of the SLAM system state.
 - Computationally efficient.
- Initialization of new source positions based on maximum likelihood data association framework.
- Deletion of unreliable source position estimates from the map using the log-odds ratio method⁵.

⁴Civera et al. (2008): "Inverse Depth Parametrization for Monocular SLAM"

Acoustic SLAM

State estimation and map management

- Only direction-of-arrival (DoA) measurements $y_k^{(n)}$ available. Inverse depth parameterization for source states is used.⁴
- State estimation is performed recursively using an unscented Kalman filter.
 - Each update yields estimates of the posterior mean \hat{x}_k and covariance matrix $\hat{\Sigma}_k$ of the SLAM system state.
 - Computationally efficient.
- Initialization of new source positions based on maximum likelihood data association framework.
- Deletion of unreliable source position estimates from the map using the log-odds ratio method⁵.

⁴Civera et al. (2008): "Inverse Depth Parametrization for Monocular SLAM"

⁵Montemerlo et al. (2003): "Simultaneous localization and mapping with unknown data association using FastSLAM"

RUHR-UNIVERSITÄT BOCHUM

RUB

Outline

1 Introduction

2 Acoustic SLAM

3 Potential-field-based exploration

4 Evaluation

Potential field method⁶

Well-established approach to robotic path planning and navigation, based on a differentiable potential function

 $U(\boldsymbol{q}_k) = U_{\mathrm{a}}(\boldsymbol{q}_k) + U_{\mathrm{r}}(\boldsymbol{q}_k)$

Figure: Attractive potential field.

⁶Khatib (1986): "The Potential Field Approach And Operational Space Formulation In Robot Control"

×

Active exploration using potential functions

• Attractive potential: move acoustic sensors towards the source in the map associated with the largest estimation uncertainty.

$$U_{\mathbf{a}}(\boldsymbol{q}_{k},\boldsymbol{n}^{\star}) = \frac{\beta_{\mathbf{a}}}{2} \|\boldsymbol{q}_{k} - \boldsymbol{m}_{n^{\star}}\|^{2}, \quad \boldsymbol{n}^{\star} = \arg\max_{n} H(\boldsymbol{m}_{n})$$

 Repulsive potential: maintain safe distance towards all sources in the map and enforce circular trajectories around detected sources to support triangulation.

$$U_{r_1}(\boldsymbol{q}_k) = \frac{\beta_{r_1}}{2} \sum_{n=1}^{N} \begin{cases} \left(\frac{1}{\|\boldsymbol{q}_k - \boldsymbol{m}_n\|} - \frac{1}{d_0}\right)^2 & \text{if } \|\boldsymbol{q}_k - \boldsymbol{m}_n\| \le d_0 \\ 0 & \text{otherwise} \end{cases}$$
$$U_{r_2}(\boldsymbol{q}_k) = \frac{\beta_{r_2}}{2} \sum_{n=1}^{N} \left[1 - \cos^2\left(\phi_n(\boldsymbol{q}_k) - \frac{\pi}{2}\right)\right]$$

Potential-field-based exploration

Active exploration using potential functions

• Attractive potential: move acoustic sensors towards the source in the map associated with the largest estimation uncertainty.

$$U_{\mathbf{a}}(\boldsymbol{q}_{k},\boldsymbol{n}^{\star}) = \frac{\beta_{\mathbf{a}}}{2} \|\boldsymbol{q}_{k} - \boldsymbol{m}_{n^{\star}}\|^{2}, \quad \boldsymbol{n}^{\star} = \arg\max_{n} H(\boldsymbol{m}_{n})$$

• **Repulsive potential:** maintain safe distance towards all sources in the map and enforce circular trajectories around detected sources to support triangulation.

$$U_{\mathbf{r}_{1}}(\boldsymbol{q}_{k}) = \frac{\beta_{\mathbf{r}_{1}}}{2} \sum_{n=1}^{N} \begin{cases} \left(\frac{1}{\|\boldsymbol{q}_{k} - \boldsymbol{m}_{n}\|} - \frac{1}{d_{0}}\right)^{2} & \text{if } \|\boldsymbol{q}_{k} - \boldsymbol{m}_{n}\| \le d_{0} \\ 0 & \text{otherwise} \end{cases}$$
$$U_{\mathbf{r}_{2}}(\boldsymbol{q}_{k}) = \frac{\beta_{\mathbf{r}_{2}}}{2} \sum_{n=1}^{N} \left[1 - \cos^{2}\left(\phi_{n}(\boldsymbol{q}_{k}) - \frac{\pi}{2}\right)\right]$$

Control signal generation

$$F(\boldsymbol{q}_{k}) = -\nabla U(\boldsymbol{q}_{k}) = -\nabla \left(U_{\mathbf{a}}(\boldsymbol{q}_{k}, \boldsymbol{n}^{\star}) + U_{\mathbf{r}_{1}}(\boldsymbol{q}_{k}) + U_{\mathbf{r}_{2}}(\boldsymbol{q}_{k}) \right)$$

- Motion trajectory update using gradient descent.
- Trajectory-update frequency can be adapted to the available computational resources.
- Control signals u_k have to be generated based on the planned trajectories.

Control signal generation

$$F(\boldsymbol{q}_{k}) = -\nabla U(\boldsymbol{q}_{k}) = -\nabla \left(U_{a}(\boldsymbol{q}_{k}, \boldsymbol{n}^{\star}) + U_{r_{1}}(\boldsymbol{q}_{k}) + U_{r_{2}}(\boldsymbol{q}_{k}) \right)$$

- Motion trajectory update using gradient descent.
- Trajectory-update frequency can be adapted to the available computational resources.
- Control signals u_k have to be generated based on the planned trajectories.

Control signal generation

$$F(\boldsymbol{q}_{k}) = -\nabla U(\boldsymbol{q}_{k}) = -\nabla \left(U_{a}(\boldsymbol{q}_{k}, \boldsymbol{n}^{\star}) + U_{r_{1}}(\boldsymbol{q}_{k}) + U_{r_{2}}(\boldsymbol{q}_{k}) \right)$$

- Motion trajectory update using gradient descent.
- Trajectory-update frequency can be adapted to the available computational resources.
- Control signals u_k have to be generated based on the planned trajectories.

Control signal generation

$$F(\boldsymbol{q}_{k}) = -\nabla U(\boldsymbol{q}_{k}) = -\nabla \left(U_{a}(\boldsymbol{q}_{k}, \boldsymbol{n}^{\star}) + U_{r_{1}}(\boldsymbol{q}_{k}) + U_{r_{2}}(\boldsymbol{q}_{k}) \right)$$

- Motion trajectory update using gradient descent.
- Trajectory-update frequency can be adapted to the available computational resources.
- Control signals u_k have to be generated based on the planned trajectories.

Potential-field-based exploration

Method comparison

Figure: Proposed approach using the potential field method.

Figure: Trajectory generated using Monte Carlo exploration.

RUHR-UNIVERSITÄT BOCHUM

RUB

Outline

1 Introduction

2 Acoustic SLAM

3 Potential-field-based exploration

4 Evaluation

Evaluation

- Monte Carlo simulations in a simulated "shoebox" room of size 5 m × 4 m × 3 m at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- **250** Monte Carlo runs conducted per *T*₆₀ for each method.

- Monte Carlo simulations in a simulated "shoebox" room of size $5 \text{ m} \times 4 \text{ m} \times 3 \text{ m}$ at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- **250** Monte Carlo runs conducted per T_{60} for each method.

- Monte Carlo simulations in a simulated "shoebox" room of size $5 \text{ m} \times 4 \text{ m} \times 3 \text{ m}$ at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- **250** Monte Carlo runs conducted per T_{60} for each method.

- Monte Carlo simulations in a simulated "shoebox" room of size 5 m × 4 m × 3 m at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- **250** Monte Carlo runs conducted per *T*₆₀ for each method.

- Monte Carlo simulations in a simulated "shoebox" room of size $5 \text{ m} \times 4 \text{ m} \times 3 \text{ m}$ at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- **250** Monte Carlo runs conducted per *T*₆₀ for each method.

- Monte Carlo simulations in a simulated "shoebox" room of size $5 \text{ m} \times 4 \text{ m} \times 3 \text{ m}$ at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- **250** Monte Carlo runs conducted per *T*₆₀ for each method.

- Monte Carlo simulations in a simulated "shoebox" room of size 5 m × 4 m × 3 m at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- 250 Monte Carlo runs conducted per T_{60} for each method.

- Monte Carlo simulations in a simulated "shoebox" room of size 5 m × 4 m × 3 m at three different reverberation times (anechoic, 0.5 s, 1 s).
- Three speech sources present in each scenario.
- Simulated 4-channel microphone array with geometry identical to a NAO robot.
- DoA measurements obtained using multiple signal classification (MUSIC).
- Simplified two-wheel differential-drive motion kinematics.
- Proposed approach compared to Monte Carlo exploration and one-step look-ahead information-based feedback control strategies.
- 250 Monte Carlo runs conducted per T_{60} for each method.

Evaluation

Results

T ₆₀	Anechoic		0.5 s		1 s	
	$A_{\rm L}$	F_1	A _L	F_1	AL	F_1
IBF	0.79	0.75	0.78	0.70	0.74	0.65
MCE	0.78	0.68	0.73	0.63	0.63	0.57
Proposed	0.86	0.79	0.83	0.75	0.78	0.70

Table: Localization gross accuracies $A_{\rm L}$ and $F_{\rm 1}$ scores.

Table: Average computation time for one control-update iteration $T_{\rm c}$ in ms.

Evaluation

Results

T ₆₀	Anechoic		0.5 s		1 s	
	$A_{\rm L}$	F_1	$A_{\rm L}$	F_1	AL	F_1
IBF	0.79	0.75	0.78	0.70	0.74	0.65
MCE	0.78	0.68	0.73	0.63	0.63	0.57
Proposed	0.86	0.79	0.83	0.75	0.78	0.70

Table: Localization gross accuracies $A_{\rm L}$ and $F_{\rm l}$ scores.

	IBF	MCE	Proposed
T _c	8.73	57.26	0.09

Table: Average computation time for one control-update iteration T_c in ms.

Introdu

Conclusion and outlook

- An active exploration strategy for acoustic SLAM based on the potential field method was presented.
- The proposed approach achieves good localization performance with comparably low computational complexity.
- Further research: alternative potential functions, performance with more advanced SLAM frameworks, ...

Introdu

RUB

Conclusion and outlook

- An active exploration strategy for acoustic SLAM based on the potential field method was presented.
- The proposed approach achieves good localization performance with comparably low computational complexity.
- Further research: alternative potential functions, performance with more advanced SLAM frameworks, ...

Introdu

RUB

Conclusion and outlook

- An active exploration strategy for acoustic SLAM based on the potential field method was presented.
- The proposed approach achieves good localization performance with comparably low computational complexity.
- Further research: alternative potential functions, performance with more advanced SLAM frameworks, ...

Conclusion and outlook

- An active exploration strategy for acoustic SLAM based on the potential field method was presented.
- The proposed approach achieves good localization performance with comparably low computational complexity.
- Further research: alternative potential functions, performance with more advanced SLAM frameworks, ...

Conclusion and outlook

- An active exploration strategy for acoustic SLAM based on the potential field method was presented.
- The proposed approach achieves good localization performance with comparably low computational complexity.
- Further research: alternative potential functions, performance with more advanced SLAM frameworks, ...

Thank you!

Acoustic SLAM Potential-field-based exploration Evaluation