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Introduction

Problem setting
■ Acoustic SLAM aims at creating a map
of acoustic sources within the
environment of a moving microphone
array (e.g. a robot).

■ The position/trajectory of the acoustic
sensors in the map is not known
a-priori and has to be estimated from
measurements.

■ Question: can the motion trajectory of
the acoustic sensors be controlled to
improve map quality w.r.t. localization
accuracy?
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Introduction

Some recent approaches to active exploration in robot audition

■ Information-based one-step look-ahead control for binaural localization1.

■ Monte Carlo exploration for sound source localization on a mobile robot2.

■ Multi-step ahead control based on Monte Carlo tree search3.

Potential extensions and improvements:

■ Full acoustic SLAM problem with multiple sources.

■ Reduction of computational demands (e.g. real-time capabilities).

1Bustamante et al. (2016): “Towards information-based feedback control for binaural active localization”
2Schymura et al. (2017): “Monte Carlo exploration for active binaural localization”
3Nguyen et al. (2017): “Long-term robot motion planning for active sound source localization with Monte

Carlo tree search”
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Acoustic SLAM

Overview

SLAM model is based on a conventional nonlinear state-space representation with
additive Gaussian noise.

r k
s 1

s 2
s 3

■ SLAM system state:

x k =
�
r k s
�T

=
�
rx,k ry,k rθ,k s T

1 · · · s T
N

�T
■ Motion dynamics:

r k = f (r k−1, u k )+v k , v k ∼N (0, Q k )

■ Measurement model:

y
(n)

k = h(r k , s n )+w k , w k ∼N (0, R k )
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Acoustic SLAM

State estimation and map management

■ Only direction-of-arrival (DoA) measurements y
(n)

k available. Inverse depth
parameterization for source states is used.4

■ State estimation is performed recursively using an unscented Kalman filter.

• Each update yields estimates of the posterior mean x̂ k and covariance
matrix Σ̂k of the SLAM system state.
• Computationally efficient.

■ Initialization of new source positions based on maximum likelihood data
association framework.

■ Deletion of unreliable source position estimates from the map using the log-odds
ratio method5.

4Civera et al. (2008): “Inverse Depth Parametrization for Monocular SLAM”
5Montemerlo et al. (2003): “Simultaneous localization and mapping with unknown data association using

FastSLAM”
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Potential-field-based exploration

Potential field method6

Well-established approach to robotic path planning and navigation, based on a
differentiable potential function

U (q k ) =Ua(q k )+Ur(q k )

Figure: Attractive potential field. Figure: Repulsive potential field.

6Khatib (1986): “The Potential Field Approach And Operational Space Formulation In Robot Control”
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Potential-field-based exploration

Active exploration using potential functions

■ Attractive potential: move acoustic sensors towards the source in the map
associated with the largest estimation uncertainty.

Ua(q k , n⋆) =
βa

2
∥q k −m n⋆∥2, n⋆ = argmax

n
H (m n )

■ Repulsive potential: maintain safe distance towards all sources in the map and
enforce circular trajectories around detected sources to support triangulation.

Ur1
(q k ) =

βr1

2

N∑
n=1


�

1∥q k−m n ∥ − 1
d0

�2
if ∥q k −m n∥ ≤ d0

0 otherwise

Ur2
(q k ) =

βr2

2

N∑
n=1

h
1−cos2
�
ϕn (q k )− π2
�i
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Potential-field-based exploration

Control signal generation

Idea: generate motion trajectory along the steepest descent of the potential field
gradient

F (q k ) =−∇U (q k ) =−∇
�
Ua(q k , n⋆)+Ur1

(q k )+Ur2
(q k )
�

■ Motion trajectory update using gradient descent.

■ Trajectory-update frequency can be adapted to the available computational
resources.

■ Control signals u k have to be generated based on the planned trajectories.

Introduction Acoustic SLAM Potential-field-based exploration Evaluation C. Schymura, D. Kolossa 7 / 11
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Potential-field-based exploration

Method comparison

Figure: Proposed approach using the
potential field method.

Figure: Trajectory generated using Monte
Carlo exploration.

Introduction Acoustic SLAM Potential-field-based exploration Evaluation C. Schymura, D. Kolossa 8 / 11
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Evaluation

Experimental setup

■ Monte Carlo simulations in a simulated “shoebox” room of size 5 m×4 m×3 m at
three different reverberation times (anechoic, 0.5 s, 1s).

■ Three speech sources present in each scenario.

■ Simulated 4-channel microphone array with geometry identical to a NAO robot.

■ DoA measurements obtained using multiple signal classification (MUSIC).

■ Simplified two-wheel differential-drive motion kinematics.

■ Proposed approach compared to Monte Carlo exploration and one-step
look-ahead information-based feedback control strategies.

■ 250 Monte Carlo runs conducted per T60 for each method.

Introduction Acoustic SLAM Potential-field-based exploration Evaluation C. Schymura, D. Kolossa 9 / 11
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Evaluation

Results

T60 Anechoic 0.5 s 1 s

AL F1 AL F1 AL F1

IBF 0.79 0.75 0.78 0.70 0.74 0.65
MCE 0.78 0.68 0.73 0.63 0.63 0.57
Proposed 0.86 0.79 0.83 0.75 0.78 0.70

Table: Localization gross accuracies AL and F1 scores.

IBF MCE Proposed

Tc 8.73 57.26 0.09

Table: Average computation time for one control-update iteration Tc in ms.
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Conclusion and outlook

■ An active exploration strategy for
acoustic SLAM based on the potential
field method was presented.

■ The proposed approach achieves good
localization performance with
comparably low computational
complexity.

■ Further research: alternative potential
functions, performance with more
advanced SLAM frameworks, ...

Thank you!
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