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Introduction

Large peak to average power ratios (PAPRs) can overload
amplifiers, distort the signal, and lead to out-of-band radiation.
The control of the PAPR is an important task in orthogonal
waveform transmission schemes (e.g. orthogonal frequency division
multiplexing (OFDM) and code division multiple access (CDMA)).
There the PAPR can be as large as

√
#carriers.

The tone reservation method is an elegant and easy to define
procedure to reduce the PAPR.
We study the tone reservation technique for code division multiple
access (CDMA) systems that employ the Walsh functions.

PAPR
Peak to average power ratio (PAPR):
Ratio between the peak value and the square root of the power.

PAPR(s) =
‖s‖L∞[0,1]

‖s‖L2[0,1]
(Note: usually the PAPR is defined as the square of this value.)

Orthogonal transmission scheme:

Transmit signal: s(t) =
∑
k∈I

ckφk(t), t ∈ [0,1],

{φk}k∈I is an orthonormal system (ONS) in L2[0,1]
We assume that ‖φk‖∞ <∞, k ∈ I (bounded functions)
Coefficients c = {ck}k∈I ⊂ `2(I)

PAPR: PAPR(s) =
‖
∑

k∈I ckφk‖L∞[0,1]

‖c‖`2(I)
.

Large PAPRs are not specific to OFDM and CDMA systems.
→ They can occur for arbitrary bounded ONSs:

Example: Given any system {φn}
N
n=1 of N orthonormal functions in

L2[0,1], then there exist a sequence {cn}
N
n=1 ⊂ C of coefficients with∑N

n=1|cn|
2 = 1, such that ‖

∑N
n=1 cnφn‖L∞[0,1] >

√
N.

Notation

Lp[0,1], 1 6 p 6 ∞: usual Lp-spaces on the interval [0,1].
`2(I): set of all square summable sequences c = {ck}k∈I indexed by I.
Norm: ‖c‖`2(I) = (

∑
k∈I|ck|

2)1/2.
Rademacher functions: rn(t) = sgn[sin(π2nt)].
Walsh functions: w1(t) = 1 andw2k+m(t) = rk+1(t)wm(t) for k = 0,1,2, . . .
and m = 1,2, . . . ,2k. Note: indexing starts with 1. The Walsh functions
{wn}n∈N form an orthonormal basis for L2[0,1].

Tone Reservation Method

CDMA transmission scheme with tone reservation
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A(t): information signal
B(t): compensation signal
{wk}k∈N: Walsh ONS

Tone reservation method:
The index set I is partitioned in two disjoint sets K (information set)
and K{ (compensation set). The set K is used to carry the information
and the set K{ to reduce the PAPR.

For a given information sequence a = {ak}k∈K ∈ `2(K), the goal is to
find a compensation sequence b = {bk}k∈K{ ∈ `2(K{) such that the peak
value of the transmit signal

s(t) =
∑
k∈K

akwk(t)︸ ︷︷ ︸
=:A(t)

+
∑
k∈K{

bkwk(t)︸ ︷︷ ︸
=:B(t)

, t ∈ [0,1],

is as small as possible.

Solvability

Definition (Solvability of the PAPR problem for the Walsh ONS)

For an ONS {φk}k∈I and a set K ⊂ I, we say that the PAPR problem is
solvable with finite constant CEX, if for all a ∈ `2(K) there exists a
b ∈ `2(K{) such that∥∥∥∥∥∥

∑
k∈K

akwk +
∑
k∈K{

bkwk

∥∥∥∥∥∥
L∞[0,1]

6 CEX‖a‖`2(K).

If the PAPR reduction problem is strongly solvable, we have:
‖b‖`2(K{) 6 CEX‖a‖`2(K)

PAPR(s) 6 CEX

Finding the optimal, i.e., minimal extension constant is an important
problem that is relevant for applications.

Central Questions

1. What is the best possible reduction of the PAPR?
2. What is the optimal information set K that achieves this reduction,

and how can it be found?
3. What is the general structure of the optimal information set K?

Smallest Extension Constant
Let K = {k1, k2, . . . , kN} ⊂ N. By CEX(K) we denote the optimal
(smallest) extension constant for which the PAPR problem is solvable
for the Walsh system {φn}n∈N = {wn}n∈N and the set K.

How small can the optimal extension constant become for different sets
K of cardinality N?

CEX(N) := inf
K⊂N
|K|=N

CEX(K) (*)

Complete description of the smallest possible extension constant CEX
(answer to Question 1):

Theorem: We have CEX(1) = 1 and CEX(N) =
√
2 for all N > 2.

Optimal information set Kopt(N) that achieves the best possible PAPR
reduction (answer to Question 2):

Theorem: For N ∈ N we have CEX(N) = CEX({2k + 1}N−1k=0 ). That is,

Kopt(N) = {2k + 1}N−1k=0 , showing that the first N Rademacher functions
achieve the minimal extension constant CEX(N).

For eachN ∈ N there indeed exists a setKopt(N) ⊂ Nwith |Kopt(N)| = N,
such that CEX(N) = CEX({K

opt(N)}). That is, the infimum in (*) is attained
and in fact a minimum.

Structure of the Optimal Information Sets

The information sets K for which the PAPR is strongly solvable need to
be sparse: If K ⊂ N is a set such that the PAPR problem is solvable
then we have

lim
N→∞

|K ∩ [1,N]|
N

= 0.

Set of all optimal information sets K:

TN := {K ⊂ N : |K| = N,CEX(N) = CEX(K)}

We cannot conclude for K ∈ TN and kl 6∈ K that K ∪ {kl} ∈ TN+1.
Does there exists an infinite set K = {k1, k2, . . . } such that the first
N elements KN = {k1, . . . , kN} always satisfy KN ∈ TN? The following
corollary gives a positive answer.

Corollary: Let N > 2 and K = {k1, . . . , kN} ∈ TN. Then we have
K \ {kl} ∈ TN−1 for all 1 6 l 6 N − 1.
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