OPTIMAL TONE RESERVATION FOR PEAK TO AVERAGE POWER CONTROL OF CDMA SYSTEMS

Introduction

- Large peak to average power ratios (PAPRs) can overload amplifiers, distort the signal, and lead to out-of-band radiation.
- The control of the PAPR is an important task in orthogonal waveform transmission schemes (e.g. orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA)).
- There the PAPR can be as large as $\sqrt{\#}$ carriers.
- The tone reservation method is an elegant and easy to define procedure to reduce the PAPR.
- We study the tone reservation technique for code division multiple access (CDMA) systems that employ the Walsh functions.

PAPR

Peak to average power ratio (PAPR):

Ratio between the peak value and the square root of the power.

$$\mathsf{PAPR}(\mathbf{s}) = \frac{\|\mathbf{s}\|_{L^{\infty}[0,1]}}{\|\mathbf{s}\|_{L^{\infty}[0,1]}}$$

$$||s||_{L^2[0,1]}$$

(Note: usually the PAPR is defined as the square of this value.)

Orthogonal transmission scheme:

Transmit signal:

$$\mathbf{s}(t) = \sum_{k\in\mathbb{J}} c_k \mathbf{\varphi}_k(t), \quad t\in[0,1],$$

- $\{\phi_k\}_{k\in\mathcal{I}}$ is an orthonormal system (ONS) in $L^2[0, 1]$
- We assume that $\|\phi_k\|_{\infty} < \infty$, $k \in \mathcal{I}$ (bounded functions)
- Coefficients $c = \{c_k\}_{k \in \mathcal{I}} \subset \ell^2(\mathcal{I})$

PAPR:

$$\mathsf{PAPR}(\mathbf{s}) = \frac{\|\sum_{k\in\mathcal{I}} \mathbf{c}_k \mathbf{\Phi}_k\|_{L^{\infty}[0,1]}}{\|\mathbf{c}\|_{\ell^2(\mathcal{I})}}.$$

Large PAPRs are not specific to OFDM and CDMA systems. \rightarrow They can occur for arbitrary bounded ONSs:

Example: Given any system $\{\phi_n\}_{n=1}^N$ of N orthonormal functions in $L^{2}[0, 1]$, then there exist a sequence $\{c_{n}\}_{n=1}^{N} \subset \mathbb{C}$ of coefficients with $\sum_{n=1}^{N} |c_n|^2 = 1$, such that $\|\sum_{n=1}^{N} c_n \phi_n\|_{L^{\infty}[0,1]} \ge \sqrt{N}$.

Notation

 $L^{p}[0, 1], 1 \leq p \leq \infty$: usual L^{p} -spaces on the interval [0, 1]. $\ell^2(\mathcal{I})$: set of all square summable sequences $c = \{c_k\}_{k \in \mathcal{I}}$ indexed by \mathcal{I} . Norm: $\|c\|_{\ell^2(\mathcal{I})} = (\sum_{k \in \mathcal{I}} |c_k|^2)^{1/2}$. Rademacher functions: $r_n(t) = \text{sgn}[\sin(\pi 2^n t)]$. Walsh functions: $w_1(t) = 1$ and $w_{2^k+m}(t) = r_{k+1}(t)w_m(t)$ for k = 0, 1, 2, ...and $m = 1, 2, ..., 2^k$. Note: indexing starts with 1. The Walsh functions $\{w_n\}_{n \in \mathbb{N}}$ form an orthonormal basis for $L^2[0, 1]$.

SPCOM-P1.2: Multiuser Channels and Multicarrier Systems

Tone Reservation Method

CDMA transmission scheme with tone reservation

Tone reservation method:

and the set \mathcal{K}^{U} to reduce the PAPR.

value of the transmit signal

$$\mathbf{s}(t) = \sum_{\substack{k \in \mathcal{K} \\ =: \mathcal{A}(t)}} a_k w_k(t) + \sum_{\substack{k \in \mathcal{K}^{\complement} \\ =: \mathcal{B}(t)}} b_k w_k(t)$$

is as small as possible.

Solvability

Definition (Solvability of the PAPR problem for the Walsh ONS) For an ONS $\{\phi_k\}_{k\in\mathcal{I}}$ and a set $\mathcal{K} \subset \mathcal{I}$, we say that the PAPR problem is solvable with finite constant C_{EX} , if for all $a \in \ell^2(\mathcal{K})$ there exists a

 $b \in \ell^2(\mathcal{K}^{U})$ such that

$$\left\|\sum_{k\in\mathcal{K}}a_{k}w_{k}+\sum_{k\in\mathcal{K}^{\complement}}b_{k}w_{k}\right\|_{L^{\infty}[0,1]}\leq$$

If the PAPR reduction problem is strongly solvable, we have:

- $\|b\|_{\ell^2(\mathcal{K}^\complement)} \leqslant C_{\mathsf{EX}} \|a\|_{\ell^2(\mathcal{K})}$
- $\mathsf{PAPR}(s) \leq C_{\mathsf{EX}}$

Finding the optimal, i.e., minimal extension constant is an important problem that is relevant for applications.

Holger Boche and Ullrich J. Mönich Technische Universität München Lehrstuhl für Theoretische Informationstechnik

 $\leq C_{\mathsf{EX}} \|a\|_{\ell^2(\mathcal{K})}.$

- 1. What is the best possible reduction of the PAPR?
- and how can it be found?

Let $\mathcal{K} = \{k_1, k_2, \dots, k_N\} \subset \mathbb{N}$. By $C_{EX}(\mathcal{K})$ we denote the optimal (smallest) extension constant for which the PAPR problem is solvable for the Walsh system $\{\phi_n\}_{n \in \mathbb{N}} = \{w_n\}_{n \in \mathbb{N}}$ and the set \mathcal{K} .

How small can the optimal extension constant become for different sets \mathcal{K} of cardinality *N*?

Complete description of the smallest possible extension constant C_{FX} (answer to Question 1):

Theorem: We have $\underline{C}_{FX}(1) = 1$ and $\underline{C}_{EX}(N) = \sqrt{2}$ for all $N \ge 2$.

Optimal information set $\mathcal{K}^{opt}(N)$ that achieves the best possible PAPR reduction (answer to Question 2):

achieve the minimal extension constant $C_{FX}(N)$.

and in fact a minimum.

Structure of the Optimal Information Sets

The information sets \mathcal{K} for which the PAPR is strongly solvable need to be sparse: If $\mathcal{K} \subset \mathbb{N}$ is a set such that the PAPR problem is solvable then we have

Set of all optimal information sets \mathcal{K} :

 $T_{N} := \{ \mathcal{K} \subset \mathbb{N} : |\mathcal{K}| = N, \underline{C}_{\mathsf{EX}}(N) = C_{\mathsf{EX}}(\mathcal{K}) \}$

corollary gives a positive answer.

Corollary: Let $N \ge 2$ and $\mathcal{K} = \{k_1, \ldots, k_N\} \in T_N$. Then we have $\mathcal{K} \setminus \{k_l\} \in T_{N-1}$ for all $1 \leq l \leq N-1$.

Central Questions

2. What is the optimal information set \mathcal{K} that achieves this reduction,

3. What is the general structure of the optimal information set \mathcal{K} ?

Smallest Extension Constant

$$N) := \inf_{\substack{\mathcal{K} \subset \mathbb{N} \\ |\mathcal{K}| = N}} C_{\mathsf{EX}}(\mathcal{K})$$
(*)

Theorem: For $N \in \mathbb{N}$ we have $\underline{C}_{EX}(N) = C_{EX}(\{2^k + 1\}_{k=0}^{N-1})$. That is, $\mathcal{K}^{opt}(N) = \{2^k + 1\}_{k=0}^{N-1}$, showing that the first N Rademacher functions

For each $N \in \mathbb{N}$ there indeed exists a set $\mathcal{K}^{opt}(N) \subset \mathbb{N}$ with $|\mathcal{K}^{opt}(N)| = N$, such that $\underline{C}_{FX}(N) = C_{EX}(\{\mathcal{K}^{opt}(N)\})$. That is, the infimum in (*) is attained

 $\lim_{N\to\infty}\frac{|\mathcal{K}\cap[1,N]|}{N}=0.$

We cannot conclude for $\mathcal{K} \in T_N$ and $k_I \notin \mathcal{K}$ that $\mathcal{K} \cup \{k_I\} \in T_{N+1}$.

Does there exists an infinite set $\mathcal{K} = \{k_1, k_2, \dots\}$ such that the first N elements $K_N = \{k_1, \ldots, k_N\}$ always satisfy $K_N \in T_N$? The following

ICASSP 2018

