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Objectives

Covariance Matrix (CM):

« plays a central role in adaptive signal processing = CM estimation

= generally exhibits a specific structure (e.g. Toeplitz for ULA)

Structured CM estimation:

« Gaussian context: COvariance Matching Estimation Technique |1]
« t-distribution framework: used as heavy-tailed model

- normalizing the data: RCOMET [2], COCA [3], Constrained Tyler [4]

= taking into account the texture — still an open problem

The purposes of this work consist in:

« proposing a new estimation procedure, for t-distributed data with a
convexly structured CM matrix.

» studying the asymptotic performance: consistency, normality and
efliciency:.

Problem setup

N iid. t-distributed data, y, ~ Ct,,4(0,R),n = 1,..., N [5]:
=y, € C" with N > m

« d degrees of freedom assumed known

Scatter matrix R

« belongs to &, a convex subset of Hermitian positive-definite matrices

- there exists a one-to-one differentiable mapping pu — R(p) from RY to S

Unknown interest parameter: pu € R?, with exact value pu,
Maximum Likelihood Estimator (MLE) of

N HR —1
fig, = argmax — (d+m) Y log (1 e (g) y“) ~ Nlog [R(p)]

n=1

Fisher information matrix

Let be y ~ Ctp,.q (0, R(p,)), with g, € RY. The FIM is expressed by [6]

Or(p)|", Or(p)
F(u,) = Y. 1
o) O |y, On |, .
where (92(:) refers to the Jacobian matrix of r(u) = vec (R(p)),

€

(d+m)W_ ! — vec (R_l) vec (R_1>H
d+m+1 |

W, = R'®@R,and Y, =
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Main results

Proposed algorithm

« otep 1: unstructured MLE of R

N

The unstructured MLE, R, is the solution of the fixed point equation:

— d+m yy! 4 —
R = > = — = Hn(R) (2)
N n:1d+ng 1Yn

Existence and uniqueness of this solution, convergence of the iterative al-
gorithm Ry,1 = Hn(Ry) to R for any initialization and consistency of
R are ensured [5].

= Step 2: Estimation of

The minimization of the following criterion w.r.t

AN

pp = argmin (r — r(p)” Y (F—r(p)) (3)

——1

_— S 1\ H _
with Y = (d + m)W ' vec (R )vec (R 1) and W = R ®R

yields a unique solution @ for ps.

Asymptotic analysis

fr, obtained by (3), is consistent, asymptotically Gaussian and efficient:

VN (o= p) 5 N (0,F(p,) ")

Numerical results

Simulation settings:
=m =4, d=>5,5000 sets of N i.id. y,, ~ Ct,,4(0,R.),n=1,..., N.

- R. = R(p,) is Hermitian Toeplitz, w, is a real-valued vector containing
the real and imaginary parts of the first row of R..

Comparison of the performance with the state of the art:

« Proposed algorithm with unstructured ML, R as step 1

« Proposed algorithm with joint estimation of d and R [7] as step 1
= to deal with the possibility of unknown parameter d

- RCOMET [2] and COCA [3] based on z, = vy, /||y.l
» Projection onto the Toeplitz set by averaging the diagonals of R

Conclusion

In this paper, we addressed structured covariance estimation for convex struc-
tures. A consistent, asymptotically unbiased and eflicient estimator is pro-
posed for t-distribution. A generalization for any Complex Elliptically Sym-
metric distributions is studied in [8]. Numerical simulations confirm the the-
oretical analysis and the practical interest of this approach.
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