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The encoding layer plays a role in extracting a
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Four main steps in the conventional processing pipeline

> Temporal average pooling (TAP) layer
> Recurrent encoding layer S S dee bbb e e - )
> Learnable dictionary encoding (LDE )layer D x L D;, x L D x L

(c) LDE layer

The GMM i-vector based approaches are comprised of a series hand-crafted or ad-hoc algorithmic components, and

they show strong generalization ability and robustness when data and computational resource are limited.

(a) TAP layer (b) Recurrent encoding layer

End-to-End Learning Scheme Experimental Results and Discussion

> In traditional GMM i-vector method, each component is optimized in Table 1. Performance on the 2007 NIST LRE closed-set task > For ID2 to ID5, additional speech data with transcription and an extra DNN

‘ Loss function ‘ Loss function

backward . separate steps. In our end-to-end learning scheme, the entire pipeline is System System Description Cavg(%0)/ EER(%) phoneme decoder is required, while our end-to-end systems only rely on the
. . . 1D 33 10s 305 acoustic level feature of LID data.
N s 0 learned in an integrated manner because the features, encoding layer and the |
| ¢ encoded vector representation for the classifier are all learned jointly. I GMM .1-Vect0r 2046/17.71  8.29/7.00  3.02/2.27 » For each training step, an integer L within [200,1000] interval is randomly
I-vector 5 FC Layer 2 DNN 1-vector 14.64/12.04  6.20/3.74  2.601.29 generated, and each data in the mini-batch is cropped or extended to L
> Th t h teristi : | . h howi the th tical 3 DNN PPP Feature 8.00/6.90 2.20/1.43 0.61/0.32 frames. In testing stage, all the 3s, 10s, and 30s duration data is tested on the
_ ractorAnalysis 0 » ere are. WO C ara‘f e.l‘.IS 'CS. oT our ea".“ng SC en.‘e snowing tne theoretica 4 DNN Tandem Feature 0 85/7.96 316195 0.97/0.51 same model. Because the duration length is arbitrary, we feed the testing
Supervector @ mecderand practical compatibility with the classical GMM i-vector approach: 5 DNN Phonotactic[22]  18.59/12.79  6.28/421  1.34/0.79 speech utterance to the trained neural network one by one.
. ¢ ® Each component of our ne.ural netw?rk has its parall.el equwalent 6 RNN D&C[22] 22.67/15.57  9.45/6.81  3.28/3.25 > It's very interesting that although recurrent layer introduces much more
M block towards to the cIa§S|caI GMM |-vector.processmg stream. / LSTM-Attention[21] -/14.72 /- /- parameters comparing with TAP, it results in a slightly degraded performance.
¢ backward ® Our neural network architectures accept variable-length speech 3 CNN-TAP 9098/11.28  3.24/5.76  1.73/3.96 Specially, when the full 30s duration utterance is fed into our CNN-
P gth sp
SDC Sequence FeatureMaps inputs and give an utterance Ievel result. 0 CNN-GRU 11.31/10.74 5.49/6.4() -/- GRU/CNN-LSTM neural network trained within 1000 frames (10s), it suffers
10 CNN-LSTM 10.17/9.80 4.66/4.26 /- from "the curse of sentence length". The performance drops sharply and
5 B . . . .
¢ NN 3 CNN-LDE 8.25/7.75  2.61/2.31 1.13/0.96 almost equals to random guess.
S > The role of CNN
o | ¢ L":nf,‘é'r‘i‘i't‘i‘ﬁ';";Jaayiﬂfjrﬁa'“ﬁ'ﬂié’c%‘i?f:&'r’;22&'5‘2'12?. window ® A|thOL.Igh recurrent !ayer can deal with.variable-l.ength inputs theoretically, it might be not suitable for thg Festing
, Tk : , , L , task with wide duration range and particularly with duration that are much longer than those used for training.
GMM i-vector End-to-End - | . 4 Since anywhere outside the receptive field of a unit does not affect
Filtorbank Cooffic S Pout X Lot the value of that unit, it is necessary to carefully control the
1iterban octticients 1 1 1 1 1 ° ° ° [ °
receptive field, to ensure that it covers the entire relevant input ® The success of TAP and LDE layer inspires us that it might be more necessary to get utterance level representation

region.

describing the context-independent feature distribution rather than the temporal structure.
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