Speaker Invariant Feature Extraction for Zero-Resource Languages with Adversarial Learning

<u>Taira Tsuchiya</u>, Naohiro Tawara, Tetsuji Ogawa, Tetsunori Kobayashi Waseda University

• Objective

Obtain speaker invariant features
Apply method to zero-resource languages

Approach

 Introduce "domain adversarial multi-task learning" into bottleneck feature extractor

BN feature extraction (for ZR lang) [Renshaw+ 2015] ³

<u>Step 1</u>: Train acoustic model with **source language**

Single-task learning

BN feature extraction (for ZR lang) [Renshaw+ 2015] 4 Step 2: Obtain bottleneck feature of target language

BN feature extraction (for ZR lang) [Renshaw+ 2015] ⁵ Step 2: Obtain bottleneck feature of target language

Our work: problem setting and structure ⁶

• Resource abundant languages

 $\{\boldsymbol{x_i}, \boldsymbol{y_i}, \boldsymbol{s_i}\}_{i=1}^N$ $\boldsymbol{s_i} \in \{1, ..., C\}$ Speaker labels

• Structure – insert speaker predictor

speaker predictor $G_s(\cdot; \theta_s)$ (domain predictor)

Bottleneck feature: Easy to recognize phonemes, but **difficult to predict speakers**.

• Goal

Evaluate features of zero-resource languages
 from phoneme discriminability viewpoint

Compared features

 Acoustic feature (fMLLR)
 Bottleneck feature
 (single-task learning)
 Bottleneck feature
 (adversarial multi-task learning)

Phoneme discriminability of features ¹²

Expect: Distance of same phonemes features are smaller than that of different phonemes. d(a, x) < d(b, x)

Characteristics of zero-resource lang. ¹³

<u>Resource abundant languages (-> source languages)</u>

Zero-resource languages (-> target languages)

sounds + transcription + transcription of its sound is NOT available. -> unsupervised settings !!

Harmful speaker effect in ZR lang ¹⁴ ideal clustering

Phoneme discriminative feature

Clustered by **phonemes** even of different speakers.

15 Harmful speaker effect in ZR lang ideal clustering a а b h C

failed clustering

Removing speaker information from features is crucial especially in **zero-resource languages**.

Data

Dataset

• Zero Resource Speech Challenge 2017

Training data (resource abundant (source) language) o Lang: English \circ # of speakers : 9 (C = 9)

○ Total length : 35 hours

Evaluation data (target languages) English -> resource abundant languages **Evaluate ABX** ○ French Zero-resource ○ Mandarin error rate languages

- Input x : fMLLR obtained by English (resource) abundant language)
- Concatenate with five frames before and after -> 220ms

Experimental settings

• Optimizer : SGD with learning rate adjustment

$$\mu_p = \frac{\mu_0}{(1 + \alpha \cdot p)^{\beta}} \qquad \mu_0 = 0.01, \alpha = 10, \beta = 0.75$$

- Mini-batch size : 1024
- Dropout
- Batch normalization

• Evaluate different speakers' segments (Across)

	English	French	Mandarin
raw feature	10.83	14.83	10.35
bottleneck feature	7.06	12.10	8.90
bottleneck feature (adversarial)	6.80	11.87	8.73

• Evaluate same speaker's segments (Within)

	English	French	Mandarin
raw feature	6.85	8.96	8.74
bottleneck feature	4.96	8.06	8.01
bottleneck feature (adversarial)	4.71	7.59	7.82

$$a = [a_1, a_2, ..., a_m]$$

$$d(a, x)$$

$$b = [b_1, b_2, ..., b_n]$$

$$d(b, x)$$

Learning curve – validation loss ¹⁹

In our method, phoneme loss decreases while speaker loss is kept high.

Conclusion and future work

• Goal

 Obtain phoneme discriminative features of target languages by suppressing speaker information

Proposed method

O Extend bottleneck feature approach

 Introduce adversarial multi-task learning and explicitly suppress speaker information from BN feature

• Future work

- O 220ms would be not enough to obtain speaker information
- **OIntroduce more long context information**
- $\odot \mbox{Extend}$ to another kind of networks
- \circ Unsupervised-learning settings