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* The changes can be further leveraged towards arriving at appropriate
predictive and prescriptive analytics results. TESTING PHASE CONCLUSIONS
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propose to incorporate a ridge regression penalty into the kernel dictionary

learning framework for carrying out a joint optimization where the dictionary
atom, coefficients and the regression weights are learnt together.

Kernelization takes care of the non-linearities in the system and hence a simple
linear regression formulation is sufficient after the transformation.
Mathematically, the proposed formulation is given as:

* The work can be extended to handle multiple response variables. Also, one can
consider deep dictionaries for more accurate modeling to represent the data.
* Additionally, one can also think of working out kernelized regressors using graph
_ Output Prediction signal based dictionaries to effectively capture the complex inter-relationships among
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the multi-variate data samples.
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