BRIDGENETS: STUDENT-TEACHER TRANSFER LEARNING BASED ON RECURSIVE NEURAL NETWORKS AND ITS APPLICATION TO DISTANT SPEECH RECOGNITION

Distant Speech Recognition (DSR)

- > DSR is to recognize human speeches in the presence of various noise sources caused by the large distance between speakers and microphones.
- \succ Traditional speech recognizers trained with clean data often fail to recognize due to signal quality mismatch between training and test environment.

Main Contribution

- > Proposed a new student-teacher paradigm for DSR: BridgeNet
- \succ BridgeNet provides teacher's intermediate features as additional hints, which can properly regularize a student network.
- > Proposed a new recursive architecture that can iteratively improve signal denoising and recognition in BridgeNet

BridgeNet

Knowledge bridges (hints) provide an error measure to guide intermediate feature representation of a student network:

$$e_{i}(\phi_{S}) = \sum_{\substack{t=1 \ L}}^{L} \left\| h_{i}(x_{t}^{clean}) - q_{i}(x_{t}^{noisy};\phi_{S}) \right\|^{2} for \ i = 2, ..., N$$
$$e_{1}(\phi_{S}) = \sum_{\substack{t=1 \ L}}^{L} \left(P_{T}(x_{t}^{clean};\phi_{T}) \right)^{T} \log P_{S}(x_{t}^{noisy};\phi_{S}) \ for \ i = 1$$

Jaeyoung Kim, Mostafa El-Khamy, Jungwon Lee Samsung Semiconductor Inc., San Diego, California, USA, 92121

 \succ Loss function is a weighted sum of all error measures:

$$L(\phi_{S}) = \sum_{i=1}^{N} \alpha_{i} e_{i}(\phi_{S}) + \sum_{t=1}^{L} (P_{T}(y_{t}^{label}))^{T} \log P_{S}(x_{t}^{noisy};\phi_{S})$$

where the second term is the cross-entropy between label and student softmax output.

Recursive Architecture

 \succ M merges two independent paths.

Composed of four sub-blocks: I, F, M, L

 \succ I and F take two inputs: acoustic input (x_t) and output (s_t^{n-1}) from prior recursion.

$$m_t^n = g(W_1 i_t^n(x_t) + W_2 f_t^n(s_t^{n-1}) + b)$$

- \succ For each new recursion, the same x_t is fed into I, which acts as a new global shortcut path.
- \succ The global shortcut paths act as highway paths that facilitate gradient \rightarrow helps to have deep flows. recursive architecture.

Existing Approaches for DSR

> Multi-task denoising (MTD):

- Jointly optimize denoising (DE) and recognition (RE) subnetworks integrated within the unified neural network.
- Minimizing MSE between raw acoustic data and high-level abstracted features in MTD is often unsuccessful.
- \rightarrow BridgeNet provides the similar high-level features to guide a student network.
- Knowledge distillation (KD):
 - Transfer the generalization ability of a bigger teacher network to a typically much smaller student network.

Generalization distillation (GD):

- Extend KD by training a teacher network with parallel clean data in order
- to apply it to signal denoising.
- GD improved ASR. However, utilization of parallel data is too limited.

 \rightarrow <u>BridgeNet provides multiple hints from teacher's intermediate layers.</u>

 $P_S(x_t^{noisy};\phi_S)$

Unrolling of a Recursive Network

Main Result

- CNN-LSTM model on AMI corpus.
- \succ Compared with KD, it showed 2.72% relative WER reduction.
- of relative WER over CNN-LSTM, 10.88% over KD.

Experiments

Multi-Task Denoising on AMI SDM corpus: CNN-LSTM* is trained with clean alignment. Rest of them used noisy alignment						
Acoustic Model	WER(all)	WER (main)				
DNN	59.1%	50.5%				
DNN, denoised	58.7%	50.2%				
CNN-LSTM	50.4%	41.6%				
CNN-LSTM, denoised	50.1%	41.4%				
CNN-LSTM*	46.5%	37.7%				
CNN-LSTM*, denoised	46.9%	38.2%				

- LSTM. DNN model has 8 layers.
- > Multi-task denoising showed marginal improvement for DNN and CNN-LSTM.
- \succ CNN-LSTM using clean alignment showed degradation with MTD.

BridgeNet: single channel SDM corpus is used for training a student network		BridgeNet: 8-channel beamformed MDM corpus is used for training a student network			
Acoustic Model	WER(all)	WER (main)	Acoustic Model	WER(all)	WER (main)
CNN-LSTM(baseline), R0	46.5%	37.7%	CNN-LSTM(baseline), RO	43.4%	34.0%
KD, R0	44.8%	35.7%	KD, R0	42.8%	33.1%
KD+DR, RO	44.1%	35.3%	KD+DR, RO	42.3%	32.5%
KD+DR+LSTM3, RO	44.0%	35.1%	KD+DR+LSTM3, RO	41.8%	32.2%
CNN-LSTM(baseline), R2	45.8%	36.9%	CNN-LSTM(baseline), R2	43.0%	33.3%
KD, R1	43.7%	34.7%	KD, R1	40.4%	30.8%
KD+DR, R1	43.4%	34.7%	KD+DR, R1	39.5%	29.9%
KD+DR+LSTM3, R1	42.6%	33.8%	KD+DR+LSTM3, R1	39.3%	29.5%

- gain over CNN-LSTM and 1.6% gain over KD.
- CNN-LSTM and KD.

SANSUNG

 \succ BridgeNet presented 5.29% accuracy improvements over the baseline

> Recursive architecture further improved BridgeNet: 13.24% improvement

ned

> CNN-LSTM is our baseline model: two layers of CNN layers are stacked with 3 layers of

 \succ KD, DR and LSTM3 are knowledge bridges between student and teacher networks. > Each added bridge incrementally improves BridgeNet: KD+DR+LSTM3 provided 6.9%

BridgeNet with recursion presented huge gain: 13.24% and 10.88% WER reduction over