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» Loss function is a weighted sum of all error measures:

Distant Speech Recognition (DSR) N

L
» DSR is to recognize human speeches in the presence of various noise L(¢ps) = Z“iei(ébs) +Z(PT(y§“bel))Tlog ps(x;wisy;(ps)
sources caused by the large distance between speakers and microphones. = —

» Traditional speech recognizers trained with clean data often fail to

recognize due to signal quality mismatch between training and test where the second term is the cross-entropy between label and student softmax

environment. output.
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» Knowledge distillation (KD):
* Transfer the generalization ability of a bigger teacher network to a

» Knowledge bridges (hints) provide an error measure to guide intermediate typically much smaller student network.

feature representation of a student network:
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» Generalization distillation (GD):

= Extend KD by training a teacher network with parallel clean data in order
to apply it to signal denoising.
GD improved ASR. However, utilization of parallel data is too limited.
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- BridgeNet provides multiple hints from teacher’s intermediate layers.

92121

Main Result

» BridgeNet presented 5.29% accuracy improvements over the baseline
CNN-LSTM model on AMI corpus.

» Compared with KD, it showed 2.72% relative WER reduction.

» Recursive architecture further improved BridgeNet: 13.24% improvement
of relative WER over CNN-LSTM, 10.88% over KD.

Experiments

Multi-Task Denoising on AMI SDM corpus: CNN-LSTM* is trained
with clean alignment. Rest of them used noisy alignment

» CNN-LSTM is our baseline model: two layers of CNN layers are stacked with 3 layers of
LSTM. DNN model has 8 layers.

Acoustic Model WER(all) WER (main)
'DNN 59.1% 50.5%
DNN, denoised 58.7% 50.2%
CNN-LSTM 50.4% 41.6%
CNN-LSTM, denoised 50.1% 41.4%
CNN-LSTM* 46.5% 37.7%
CNN-LSTM*, denoised 46.9% 38.2%

» Multi-task denoising showed marginal improvement for DNN and CNN-LSTM.

» CNN-LSTM using clean alignment showed degradation with MTD.

BridgeNet: single channel SDM corpus is

used for training a student network

Acoustic Model WER(all) WER (main) - Acoustic Model WER(all) WER (main) ‘
CNN-LSTM(baseline), RO 46.5% 37.7%  CNN-LSTM(baseline), RO 43.4% 34.0%
KD, RO 44.8% 35.7% KD, RO 42.8% 33.1%
KD+DR, RO 44.1% 35.3% KD+DR, RO 42.3% 32.5%
KD+DR+LSTM3, RO 44.0% 35.1% KD+DR+LSTM3, RO 41.8% 32.2%
CNN-LSTM(baseline), R2 45.8% 36.9% CNN-LSTM(baseline), R2 43.0% 33.3%
KD, R1 43.7% 34.7% KD, R1 40.4% 30.8%
KD+DR, R1 43.4% 34.7% KD+DR, R1 39.5% 29.9%
KD+DR+LSTM3, R1 42.6% 33.8% KD+DR+LSTM3, R1 39.3% 29.5%

» KD, DR and LSTM3 are knowledge bridges between student and teacher networks.

» Each added bridge incrementally improves BridgeNet: KD+DR+LSTM3 provided 6.9%
gain over CNN-LSTM and 1.6% gain over KD.

BridgeNet: 8-channel beamformed MDM
corpus is used for training a student network

» BridgeNet with recursion presented huge gain: 13.24% and 10.88% WER reduction over
CNN-LSTM and KD.



