
Grid-Free Direction-of-Arrival
Estimation with Compressed Sensing

and Arbitrary Antenna Arrays
Sebastian Semper – sebastian.semper@tu-ilmenau.de

Florian Roemer, Thomas Hotz, Giovanni Del Galdo

April 13, 2018

Technische Universität Ilmenau



Direction of Arrival Estimation

Reconstruction Schemes

Main Results

Simulations



Direction of Arrival Estimation

Reconstruction Schemes

Main Results

Simulations



Preliminaries & Motivation

. . .
θ

Ï Given an array of M antennas
Ï Planar (narrowband) waves in the far

field impinging from unknown directions
Ï We take noisy measurements
Ï Goal: Estimate directions of arrival

(DOA) for each wave
Ï Motivation: direction finding [1], mas-

sive MIMO and 5G [2] and radar [3]

[1] Valaee, Champagne, and Kabal, “Parametric localization of distributed sources”, 1995.
[2] Chen, Yao, and Hudson, “Source localization and beamforming”, 2002.
[3] Blair and Brandt-Pearce, “Monopulse DOA estimation of two unresolved Rayleigh targets”, 2001.
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State of the Art

Ï Grid-free subspace based DOA (MUSIC, ESPRIT)
Ï Grid-bound Sparse Recovery based DOA [4]
Ï Grid-free sparsity based line spectral estimation [5]
Ï Grid-free Sparse Recovery based DOA for (randomly subselected) ULAs [6]
Ï Grid-free compressed sensing based line spectral estimation [7]

[4] Malioutov, Cetin, and Willsky, “A sparse signal reconstruction perspective for source localization with sensor
arrays”, 2005.
[5] Bhaskar, Tang, and Recht, “Atomic Norm Denoising With Applications to Line Spectral Estimation”, 2013.
[6] Xenaki and Gerstoft, “Grid-free compressive beamforming”, 2015.
[7] Heckel and Soltanolkotabi, “Generalized Line Spectral Estimation via Convex Optimization”, 2017.
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Main Contributions

Ï Grid-free sparsity based DOA estimation via ANM
Ï Arbitary antenna arrays via Effective Aperture Distribution Function (EADF)
Ï Spatial compression with an analog combining network using generalized line

spectral estimation
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Beampatterns
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Figure. Beampatterns of M= 4 elements.

Ï Let a(θ) : [0,2π)→CM model
response of antenna array
comprising ofM antennas for a
planar wave impinging from
azimuth angle θ

Ï Can be measured in practice
Ï Can model arbitrary, thus more

realistic antennas
Ï Formal model for beam patterns?
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Fourier Series to the Rescue Effective Aperture Distribution Function

Ï Antenna patterns a(θ) are periodic in θ and smooth
Ï Good approximation via truncated Fourier series element wise

am(θ)≈
L−1
2∑

ℓ=− L−1
2

gm,ℓe ȷθℓ

Ï For G ∈CM×L containing the gm,ℓ and f(θ)= [
e− ȷθ(L−1)/2, . . . ,e ȷθ(L−1)/2] we can

summarize
a(θ)≈G · f(θ)

Ï Concise and efficient description of the whole antenna behaviour [8]
Ï We observe measurements of S waves impinging with unknown amplitudes cs

x=
S∑

s=1
cs ·a(θs)=G ·

S∑
s=1

cs · f(θs)

[8] Landmann and Galdo, “Efficient antenna description for MIMO channel modelling and estimation”, 2004.
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Spice things up with Compression

Ï Motivation: reduction of
hardware complexity

Ï We currently have G ∈CM×L and

x=G ·
S∑

s=1
cs · f(θs)

Ï Pick a matrix Φ ∈CK×M for some
K ∈N and we get

y=Φ ·x=Φ ·G ·
S∑

s=1
cs · f(θs)+n

Ï Action of Φ is realized via analog
combining

Φ

Figure. Spatial compression scheme from
5 antenna ports down to 3 outputs
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Atomic Norm Minimization for Line Spectral Estimation

Ï For the much simpler model

z=
S∑

s=1
csf(θs)+n

with f(θ)= [
e− ȷθ(L−1)/2, . . . ,e ȷθ(L−1)/2]

Ï Define an atomic set
A = {

f(θ) ∈CM | θ ∈ [0,2π)
}

Ï Define the atomic norm

x 7→ ∥x∥A = inf {t> 0 | x ∈ t ·conv(A )}

Ï Pose following convex optimization problem for some suitably chosen ϵ

min
x

∥x∥A subject to ∥z−x∥2 ≤ ϵ

⇝ Atomic Norm Minimization (ANM)
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The Semidefinite Reformulation

Ï Problem: How to get a solution to the atomic norm minimization?
Ï Solution:

Ï Reformulate it as a semidefinite program according to [9] using duality:

min
(x,u,t)∈CL×CL×R

1
2n

trToep(u)+ 1
2
t

subject to
(
Toep(u) x
xH t

)
⪰ 0,

∥z−x∥2 É ϵ.

(1)

Ï Extract the frequencies, i.e. DOAs θ1, . . . ,θS, from Toep(u) using covariance based
spectral estimation methods, like MUSIC or ESPRIT.

[9] Megretski, “Positivity of trigonometric polynomials”, 2003.
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Atomic Norm Minimization for DOA

Ï Incorporate the model for compression and EADF in optimization
Ï Modify atomic norm minimization to

min
x

∥x∥A subject to ∥z−Φ ·G·x∥2 ≤ ϵ

Ï Modify the semidefinite program to

min
(x,u,t)∈CL×CL×R

1
2n

trToep(u)+ 1
2
t

subject to
(
Toep(u) x
xH t

)
⪰ 0,

∥z−Φ ·G·x∥2 É ϵ.

(2)

Ï Still we can use Standard ESPRIT to estimate the θ1, . . . ,θS
Ï Conditions on the θ1, . . . ,θS, Φ and G such that ANM has a unique solution?
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Atomic Norm Minimization for DOA How to design the combining network?

Ï Requirements on Φ
Ï Good reconstruction properties
Ï Fairly easy to implement with

phase shifters
Ï Draw Φ randomly

Definition (sub-Gaussian)
A real valued random variable X is
called sub-Gaussian with variance
factor c, if

Eexp(λX)Éλ2
c
2

for all λ ∈R.

Ï Examples: Gaussian, Binomial,
Rademacher

Ï Conditions on the θ1, . . . ,θS, Φ
and G such that ANM has a
unique solution with high
probability?

Ï Matrices can be sub-Gaussian as
well

Ï ⇝ Rademacher
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Ï Combine results in [10] with our model and measurement setup

Theorem (S. S.)
If

|θi−θj| > 1
L

for all i ̸= j, then using the Rademacher measurement setup, the matrix Φ ·G is
b-sub-Gaussian with b−1 = max

1ÉℓÉL
∥gℓ∥22 and Σ=GHG. Thus the ANM has a unique

solution with high probability, if the number of measurements K obeys

KÊ ĉ ·S · log(M) · max
1ÉℓÉL

∥gℓ∥22 ·σ(GHG),

where σ(GHG) denotes the condition number of GHG.

[10] Heckel and Soltanolkotabi, “Generalized Line Spectral Estimation via Convex Optimization”, 2017.

Slide 11 of 15Main Results



Direction of Arrival Estimation

Reconstruction Schemes

Main Results

Simulations



Simulations using genuine antenna measurements

Figure. The simulated SPUCPA setup

Ï Stacked polarimetric uniform
circular patch array (SPUCPA)
with 58 ports.

Ï Used only the ports
corresponding to the two stacked
circular arrays with 12 elements
per ring

Ï ANM to estimate covariance
Toep(u) done via cvx using the
SDPT3 solver

Ï DOA estimation based on
covariance via Standard ESPRIT
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Figure. Estimation error vs. SNR for S= 2 sources, M= 24 elements, L= 25 Fourier
coefficients and K= 12 measurements
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Conclusion & Future Extensions

Conclusion
Ï Arbitrary Antennas
Ï Compression
Ï Grid-free

Outlook
Ï Estimate multidimensional

frequencies / directions
Ï Bistatic Tx / Rx setups for

channel sounding / radar
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Thank You!
Questions?
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BACKUP SLIDES
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Figure. Estimation error vs. SNR for S= 3 sources, M= 24 elements, L= 25 Fourier
coefficitent and K= 15 measurements
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Figure. Randomly drawn virtual (toy) array geometry (M= 29)
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Figure. Estimation error (logarithmic scale) vs. K, S for the noise-free case and Rademacher
distributed compression matrices.
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C(θ)= σ2

2
tr

([ℜ(DHΠ⊥
AD⊙ (ccH)T)

]−1)
, (3)

where A=GF(θ), D= ȷGdiag(µ)F(θ) and Π⊥
A = I−A(AHA)−1AH. Here

F(θ)= [f(θ1), . . . ,f(θS)], the vector µ=−(L−1)/2, . . . ,+(L−1)/2 and ℜ denotes the real
part of a complex number. If we incorporate compression, it changes to

C(θ)= σ2

2
tr

([
ℜ(D̄HΠ⊥

ĀD̄⊙ (ccH)T)
]−1)

, (4)

where Ā=ΦA=ΓF(θ) and D̄=ΦD= ȷΓdiag(µ)F(θ).
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