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Introduction

Pulse Transit Time (PTT)

• Current methods of measuring and monitoring blood 

pressure (BP) require either invasive procedures or 

intermittent inflation of a cuff to restrict blood flow, 

which can be cumbersome and cause discomfort. 

• A reliable, accurate non-invasive and continuous BP 

monitoring is highly useful.

• Pulse Transit Time (PTT) has the potential to estimate 

BP in a continuous fashion [1]. 

• PTT can be defined as the time between the R-peak 

of an ECG signal and the peak of the PPG signal 

when measured within the same cardiac cycle 

shown in the figure below.

• Input 𝒙𝒊 = [ECG, PPG, PTT, 𝐀𝐜𝐜𝐥𝐱,𝐲,𝐳 , 𝐆𝐲𝐫𝐨𝐱,𝐲,𝐳], is a 

vector of 9 elements and Output 𝒚𝒊 = BP value, is a 

scalar.

•During training 100 samples are fed to the LSTM and 

the network outputs 100th BP value in the sequence 

[3]. 

LSTM  Model (many-to-one) 

• 32 neurons in first hidden layer.

•Dropout layer to prevent overfitting.

• 1 neuron in the output layer.

• Training was performed with 50 epochs and 

batch size 64. 

• Implemented using Keras API [4] with TensorFlow and 

on a double NVIDIA GeForce GTX 1080.

Conclusion

• A large-scale study was performed involving 50 healthy volunteers. 

• Accl and Gyro values improved continuous BP prediction in motionless 

condition as well as during motion using RNN.

• The training set contained data collected in motionless condition while, 

in the test set we had data in presence of motion as well. RNN also 

predicted the new data quite well (handles the Extrapolation problem).
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Automated PTT Calculation

Automated pulse transit time was computed using 

windowed cross-correlation between ECG and 

sparsified PPG signals [2].

ECG Signal (blue) and sparsified PPG Signal (red)


