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Naturally linked data

Real-world data are often acquired as a collection of matrices# the same
phenomenon is measured several times under various experimentation condition

Such data blocks share some mutual components as well as individual information

Common features reveal connections between members clustering

Individual features characterise the members separately classification
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Types of data: From a scalar to a tensor
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Source: “Tensor networks for dimensionality reduction and large-scale optimization. Part 1: Low-rank tensor decompositions”
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Tensorisation: Image as base colors
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Tensorisation: Video clip analysis

A simple re-arrangement of frames (by stacking into a cube) transforms the matrix of
1,000 × 1,000,000 pixels into a 3-way tensor of size 1,000 × 1,000 × 1,000
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Outer product: Efficient data representation

Consider the vectors a =
[
1 1 1
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Outer product: Colorful example

Color ensemble

= rank-1

Base color 1

cR

+ rank-1

Base color 2

cG

+ rank-1

Base color 3

cB

All colors are just combination of three base colors: red, green and blue

We can represent this ensemble as a linear combination of outer products of base
colors (red, green and blue) with the corresponding intensity vectors cR, cG, cB

Their values characterise how much of the base color there is in the respective sample
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The canonical polyadic decomposition (CPD)

Any tensor with arbitrarily many dimensions can be represented through the CPD

X ∼=
R∑

r=1

Xr
∼=

R∑
r=1

λr · ar ◦ br ◦ cr (3)

Mode-n vectors ar,br, cr are grouped into factor matrices A,B,C

Each factor matrix efficiently represents only one specific characteristic in accordance
with corresponding mode of original data

Real data are corrupted by noise# CPD is rarely exact and is estimated by solving

min
A,B,C

‖X− X̂‖2F with X̂ = JΛ; A,B,CK (4)
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Extension of the CPD# LL1 decomposition

XI

J

K

= A1

BT
1

c1

+ A2

BT
2

c2

+ · · · + AR

BT
R

cR

LL1 is a linear combination of tensors with different multi-linear rank

X ∼=
R∑

r=1

Xr
∼=

R∑
r=1

Ar ◦Br ◦ cr (5)

The outer product of matrices Ar ∈ RI×Lr and Br ∈ RJ×Lr is capable of
representing of complex structure

Xr = Ar ◦Br = ArB
T
r

rank(Xr) > 1
(6)

More flexible representation of data, but computationally more expensive
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Extraction of common features

XI

J

K

= X̄1

c1

+ X̄2

c2

+ · · · + X̄R

cR

Interpretation of the factor matrices requires imposing constraints

By introducing non-negativity constraint on C in Eq. (3) and on cr in Eq. (5) the base
matrices are considered to be common information X̄r

Common components are computed as:

1 For the CPD
X̄r = ar ◦ br = abT (7)

2 For the LL1
X̄r = Ar ◦Br = ArBT

r (8)
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Extraction of individual features

XI

J

K

= X̄1

c1

+ X̄2

c2

+ · · · + X̄R

cR

Interpretation of the factor matrices requires imposing constraints

By introducing non-negativity constraint on C in Eq. (3) and on cr in Eq. (5) the base
matrices are considered to be common information X̄r

For a sample Xk, its common X̄k and individual X̌k components are separable

Xk = X̄k + X̌k where Xk = X(:,:,k) (9)

Values C(k,r) indicate whether X̄r contributes to the k-th slice of X

X̌k = Xk − X̄k

= X(:,:,k) −
∑
i∈Ik

αiY(:,:,i)
(10)
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ORL faces dataset

We employed the benchmark ORL faces dataset for the classification of face images

400 samples = 40 (subjects) × 10 (different lighting conditions and facial expressions)

Train test split for each class is 70% and 30% of samples respectively

All samples from this dataset share a lot of common information
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Pipeline for training a classification model
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Results: Common information

Group 1. Top – CPD, bottom - LL1

Group 2. Top – CPD, bottom - LL1

Ilia Kisil, Imperial College London Common and Individual Feature Extraction using Tensor Decompositions April 20, 2018 14 / 23



Results: Individual information
Subject 1, Group 1

 LL1 approx error = 0.09
Subject 2, Group 1

 LL1 approx error = 0.09

Subject 3, Group 2
 LL1 approx error = 0.09

Subject 1, Group 2
 LL1 approx error = 0.09

Subject 2, Group 2
 LL1 approx error = 0.09

Subject 3, Group 2
 LL1 approx error = 0.09
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Results: Classification rates and analysis
Similarity of original data
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Similarity is estimated through the cosine distance

Degree of similarity is mostly affected by the common information in data

Individual components exhibit much less similar patterns across different classes

This significantly reduces the searching space for decision boundaries

Results were obtained by averaging rates of 100 independent simulations

Table 1: Classification Performance in %

SVM NN QD cKNN

Original 83.9 4.35 91.5 79.0

CPD 91.5 81.8 89.8 85.5

LL1 94.7 92.2 86.8 84.3
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Conclusions: Key points to take home

1 The constraints imposed on different modes of a tensor decomposition should have
physical meaning

2 The outer product plays a key role in separation of common and individual
information

3 The dimensionality of search spaces can be dramatically reduced

4 There is a finite number of common features for a given data

5 The individual features can tackle overfitting of the classification model and enhance
its performance

New Software: Higher Order Tensors ToolBOX (HOTTBOX)

m



�

Our python package for multilinear algebra: github.com/hottbox/hottbox

Documentation: hottbox.github.io

Tutorials: github.com/hottbox/hottbox-tutorials
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The End

Thank you for your attentionU

Questions?
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Appendix: Tensorisation for multiple trials
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Appendix: Tensorisation for multiple subjects
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Appendix: Sub-structures within a tensor

A(:,:,k) A(:,j,:) A(i,:,:)
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A A(1)

A

∈

A

I1 × I2 I3

I I1 I32
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×

×

R

A(2) ∈ R
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mode-1 unfolding

mode-2 unfolding

mode-3 unfolding
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Appendix: CPD as a sum of common components

XI
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