

Depar

Introduction

- In block sparse signals groups of entries are active simu
- Block sparse signal recovery can be formulated as finding the minimum number of active groups that describes the
- In general, this is a complex problem. A relaxation is to with the smallest sum of group energies.
- Bayesian approaches have also been proposed for group by generalizing Sparse Bayesian Learning (SBL).
- In this paper, a Weighted Block Sparse Bayesian Learni sparse vector recovery.

Block Sparse Bayesian Learning (BSBL)

- Consider the system $\mathbf{y} = \mathbf{G}\mathbf{x} + \mathbf{n}$, $\mathbf{n} \sim N(0, \sigma^2 \mathbf{I})$, \mathbf{G} $\mathbf{x} \in \mathbb{R}^n$.
- Assume each block $\mathbf{x}_i \in R^{d_i imes 1}$ in \mathbf{x} follows a parametrize Gaussian distribution, i.e.,

$$p(\mathbf{x}_i; g_i, \mathbf{B}_i) \sim \mathcal{N}(0, g_i \mathbf{B}_i),$$

where $q_i \ge 0$ controls the block sparsity of x.

- Assuming independence between the blocks, $p(\mathbf{x})$ can $p(\mathbf{x}) \sim \mathcal{N}(0, \boldsymbol{\Sigma}_0), \text{ where } \boldsymbol{\Sigma}_0 = \mathsf{diag}\{g_1 \mathbf{B}_1, \dots, g_m \mathbf{B}_m\}$
- The posterior of \mathbf{x} is [1]

$$p(\mathbf{x};\mathbf{y},\sigma^2,\{g_i,\mathbf{B}_i\}_{i=1}^m) = \mathcal{N}(\boldsymbol{\mu}_x,\boldsymbol{\Sigma}_x)$$

where

$$\boldsymbol{\mu}_x = \boldsymbol{\Sigma}_0 \mathbf{G}^T (\sigma^2 \mathbf{I} + \mathbf{G} \boldsymbol{\Sigma}_0 \mathbf{G}^T)^{-1} \mathbf{y},$$

and

$$\boldsymbol{\Sigma}_x = \left(\boldsymbol{\Sigma}_0^{-1} + \sigma^{-2} \mathbf{G}^T \mathbf{G}\right)^{-1}$$

- Given the parameters σ^2 and $\{g_i, \mathbf{B}_i\}_{i=1}^m$, the Maximum (MAP) estimate of x is $\hat{\mathbf{x}} = \boldsymbol{\mu}_x$.
- The parameters can be estimated by minimizing

$$\mathcal{L}(\sigma^2, \{g_i, \mathbf{B}_i\}_{i=1}^m) = \log |\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{\Sigma}_0 \mathbf{G}^T + \mathbf{y}^T (\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{\Sigma}_0 \mathbf{G}^T)^{-1}$$

• Differentiating L w.r.t. g_i , σ^2 , and \mathbf{B}_i , and equating to

$$g_i = \frac{1}{d_i} \operatorname{Tr}[\mathbf{B}_i^{-1}(\boldsymbol{\Sigma}_x^i + \boldsymbol{\mu}_x^i(\boldsymbol{\mu}_x^i)^T)], i = 1, 2,$$
$$\sigma^2 = \frac{\|\mathbf{y} - \mathbf{G}\boldsymbol{\mu}_x\|_2 + \operatorname{Tr}[\boldsymbol{\Sigma}_x \mathbf{G}^T \mathbf{G}]}{M},$$

ghted		Block Sparse B Sele	
		Ahmed Al Hilli, an	C
		Electrical and Comp was supported by NS	
		Block Sparse Bayesian Lea	al
ultaneously. ing the signal with the observation. to find the signal		• Differentiating L w.r.t. \mathbf{B}_i , and each	qı
		$\mathbf{B}_i = \frac{1}{m} \sum_{i=1}^m$	1
p sparse proble	ms	where $oldsymbol{\mu}_x^i$ is the $i^{ ext{th}}$ block in $oldsymbol{\mu}_x$, $oldsymbol{\Sigma}$ diagonal block in $oldsymbol{\Sigma}_x$, and d_i is the	e
ning is proposed	1 for	The Proposed Weighted E (WBSBL) Approach	3
		• Consider $\alpha_i = \frac{1}{q_i} \sim \mathbf{Gamma}(a_i, b_i)$	$_i)$
$\mathbf{k} \in R^{m imes n}$, and		• Using a Type II maximum likelihoo function to be minimized is $L(\sigma^2, \{g_i, \mathbf{B}_i\}_i^r)$	00
rized multivariate		$\mathbf{y}^T (\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{\Sigma}_0 \mathbf{G}^T)^{-1}$	U—
	(1)	• Differentiating w.r.t. g_i , σ^2 , and H	
be written as		$g_i = \frac{\operatorname{Tr}[\mathbf{B}_i^{-1}(\mathbf{\Sigma}$	
),	(2)	and σ^2 and \mathbf{B}_i are as described in • Suppose we have access to a weig	;h
	(3)	values corresponding to active \mathbf{x}_i has non active blocks in \mathbf{x} .	
ma a Dactariari	(4)	• Set $a_i = \frac{1}{w_i}$ and $b_i = w_i$. Assuming $g_i = \frac{\text{Tr}[\mathbf{B}_i^{-1}(\boldsymbol{\Sigma}_x^i)]}{g_i = \frac{1}{w_i}}$	
m a Posteriori		Simulation Results	a
T +	(5)	• 1000 Monte Carlo simulations are with entries following $N(0,1)$ is contents	
o zero we get		 k indices are randomly selected as blocks. 	
, m,	(6)	• The values of the non-zero entries $N(5, 0.25)$.	; i
	(7)		

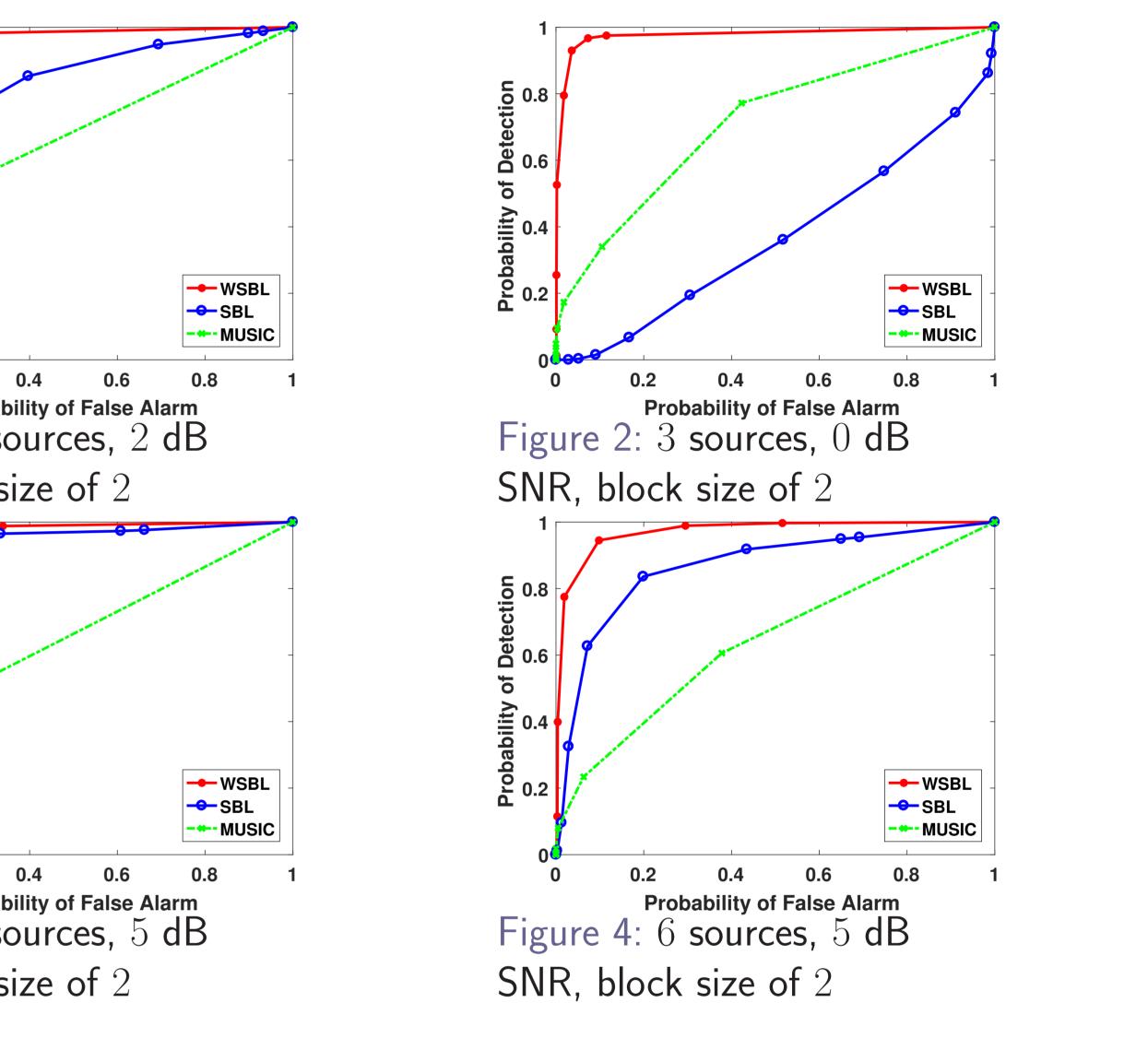
(7)

• Additive white Gaussian noise is added to $\mathbf{G}\mathbf{x}$ with SNR equal to 5 dB, $2 \, \mathrm{dB}$, and $0 \, \mathrm{dB}$.

ayesian Learning for Basis tion d Athina Petropulu outer Engineering, Rutgers University SF under Grant ECCS-1408437 Simulation Results rning (BSBL) quating to zero we get $\mathbf{W}.$ $\Sigma_x^i + oldsymbol{\mu}_x^i (oldsymbol{\mu}_x^i)^2$ (8)٥.6 <mark>ص</mark> is the corresponding i^{th} principal e length of the i^{th} block. **Block Sparse Bayesian Probability of False Alarm** Figure 1: 3 sources, 2 dB SNR, block size of 2od procedure as in BSBL, the cost $\sigma^m_{i=1}) = \log |\sigma^2 \mathbf{I} + \mathbf{G} \mathbf{\Sigma}_0 \mathbf{G}^T| + 1$ (9) $+2\sum_{i=1}^{m}\frac{b_{i}}{g_{i}}+2\sum_{i=1}^{m}a_{i}\log(g_{i}).$ 0.8 **Probability of False Alarm** Figure 3: 5 sources, 5 dB \mathbf{B}_i , we get SNR, block size of 2 $b_x^i + \boldsymbol{\mu}_x^i(\boldsymbol{\mu}_x^i)^T)] + 2b_i$ (10) $d_i + 2a_i$ Conclusion (7) and (8), respectively. ht vector w, which contains large plocks, and low values corresponding to

- g that $w_i \neq 0$, update the rule for g_i as $+\boldsymbol{\mu}_{x}^{i}(\boldsymbol{\mu}_{x}^{i})^{T})^{T}]+2w_{i}$ (11) $d_i + 2/w_i$
- performed. In each trial, a matrix G onstructed.
- the locations of the non-zero active
- in all the blocks are taken from
- References

• MUSIC based on 100 snapshots is used to construct the weighting vector



• Weighted Block Sparse Bayesian Learning approach has been proposed, which assigns distinct variance priors to each block, giving some hyperparameters more importance over the others.

• The importance of a specific parameter is obtained based on a rough estimate of the underlying block sparse vector, obtained via a methods that does encourage sparsity.

• Simulations have shown significant improvement in terms of probability of detection and false alarm, especially at low SNR scenarios.

• WBSBL degrades slower as the number of active block increased, as compared to BSBL.

• [1] Zhang, Zhilin, and Bhaskar D. Rao. "Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation." IEEE Transactions on Signal Processing 61.8 (2013): 2009-2015.