

Introduction and Motivation

Particle Flow Particle Filter for Gaussian Mixture Noise Models Soumyasundar Pal and Mark Coates

Dept. of Electrical and Computer Engineering, McGill University soumyasundar.pal@mail.mcgill.ca, mark.coates@mcgill.ca

Particle Flow Particle Filter (PFPF)

	 PFPF of [2] of deterministic The deterministic proposal can 	constructs its properticle flow appressing r_{μ}	poposal distribution option of $T_1^i = T^i(\eta_0^i, x_k^i)$
		$q(\eta_1^i x_{k-1}^i,z_k)$	$= \frac{p(\eta_0^*)}{ \det(\dot{T}^i(\eta_0^*)) }$
	where, $\dot{T}^i(\cdot)$ Pr	is the Jacobian oposed Alg	function of th orithm (P
	 Our design of q(xⁱ_k, dⁱ_k, cⁱ_k x) Conditioned of of [2] is used Importance with ωⁱ_k = ^{p(x)}/_{q(x)} Estimation vito 	f joint proposal $i_{0:k-1}^{i}, d_{1:k-1}^{i}, c_{1:k}^{i}$ on the auxiliary to construct $q(x_{0:k}^{i}, d_{1:k}^{i}, c_{1:k}^{i} z_{1})$ $x_{0:k}^{i}, d_{1:k}^{i}, c_{1:k}^{i} z_{1})$ $x_{0:k}^{i}, d_{1:k}^{i}, c_{1:k}^{i} z_{1})$ a importance satisfies	distribution of $x_{k-1}, z_{1:k}) = P$ variables $(d_k, x_k^i x_{k-1}^i, d_k^i, c_k^i)$ oint posterior: $\frac{x_k}{x_k} \propto \omega_{k-1}^i \frac{p(x_k)}{c_k}$ ampling : N
$(Q_{k,m})$	NI.	$p(x_k z_{1:k})$	$\omega_{x}) pprox \sum_{i=1}^{N_{p}} \omega_{k}^{i} \delta(x_{i})$
Ň			perments
	 We compare Kalman filte Particle flow Particle flow PFPF (EDF) Bootstrap F Filtering alg PF-GMM, (the novel PFPF er type algorithm v algorithms for v particle filters H)) Particle Filter (E gorithms for mu GSPF)	F-GMM algorit n for unimodal unimodal pos for unimodal SPF) Itimodal poste
	Linear Dyn	amic and Mea	asurement N
alina	Dimension o v_k and w_k a	of state, $d = 64$ are drawn from (, $x_k = \alpha x_{k-1}$ Gaussian mixt
		Figure 4: Ave	rage MSE vs Exe
ensionality of n to migrate	10 ² 10 ¹		EKF-GMM PF-GMM PFPF-GMM GSPF UKF LEDH EDH
bution.	Avg. M.		PFPF (EDH) BPF
	10^{-1} =	almost optima /	Comporat
► particles	- - - -		Comparat

 10^{-2}

 10^{-2}

 10^{-1}

oution based on a modified samples from the prior. (z_{k-1}, z_k) is invertible, so the

- $\left| \frac{x_{k-1}^{i}}{x_{k-1}^{i}, z_{k})} \right|^{i}$ he mapping $T^i(\cdot)$. **PFPF-GMM**)
- of (x_k, d_k, c_k) : $P(d_k^i)P(c_k^i)q(x_k^i|x_{k-1}^i,d_k^i,c_k^i,z_k)$ (c_k) , invertible particle flow (z_k^i, z_k) .
- $x_k^i | x_{k-1}^i, d_k^i) p(z_k | x_k^i, c_k^i)$ $q(x_k^i | x_{k-1}^i, d_k^i, c_k^i, z_k)$
- $x_k x_k^i$

and Results

- thm with al posterior (UKF) sterior (LEDH, EDH) posterior (PFPF (LEDH),
- eriors (EKF-GMM,

Models :

 $+ v_k, z_k = x_k + w_k.$ ures with three components. ecution time

Nonlinear Dynamic and Measurement Models :

- \blacktriangleright Dimension of state, d = 64. Dynamic model:

- poorly in both experiments.
- comparable MSE to almost optimal EKF-GMM.
- In the nonlinear example, PFPF-GMM outperforms all other algorithms significantly.

- and in settings with low measurement noise.

- Signal Proc., Sensor Fusion, Target Recog., Orlando, FL, USA, April 2010.
- *Processing*, vol. 65, no. 15, pp. 4102–4116, August 2017.


```
g_k^c(x_{k-1}) = 0.5x_{k-1}^c + 8\cos(1.2(k-1))
                                                                       +\begin{cases} 2.5 \frac{x_{k-1}^{c+1}}{1 + (x_{k-1}^c)^2} & \text{, if } c = 1\\ 2.5 \frac{x_{k-1}^{c+1}}{1 + (x_{k-1}^{c-1})^2} & \text{, if } 1 < c < d\\ 2.5 \frac{x_{k-1}^c}{1 + (x_{k-1}^{c-1})^2} & \text{, if } c = d \end{cases}
• Measurement model : h_k^c(x_k) = \frac{(x_k^c)^2}{20}, 1 \le c \le d.
```

 $\triangleright v_k$ and w_k are drawn from Gaussian mixtures with three components.

Exec.Time (s)

Algorithms suitable for unimodal posterior distributions perform

BPF and GSPF suffer form weight degeneracy in high dimensions. In the linear example, both PFPF-GMM and PF-GMM achieve

Conclusion

We presented a novel particle filter for Gaussian mixture noise models. Successfully tracks multiple modes of the posterior distribution. The proposed filter offers impressive performance in higher dimensions

References

[1] F. Daum, J. Huang and A. Noushin, "Exact particle flow for nonlinear filters", in *Proc. SPIE Conf.*

[2] Y. Li and M. Coates, "Particle filtering with invertible particle flow", IEEE Trans. Signal

[3] Traffic Safety Store, "What self driving cars see", https://www.trafficsafetystore.com/ blog/wp-content/uploads/what-se lf-driving-cars-see.jpg, Retrieved: 2017/12/14.