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Connectionist Temporal Classification (CTC)

Allow repetitions of non-blank/blank labels

Add the blank as an additional label, meaning no (actual) labels are emitted 

A  B  C
	A			A			Æ			Æ			B			C			Æ	

	Æ			A			A			B			Æ			C			C	

	Æ			Æ			Æ			A			B			C			Æ	

collapse

expand

• CTC is a sequence-to-sequence learning method used to map speech waveforms directly to 
characters, phonemes, or even words

• CTC paths 𝝅 differ from labels sequences in that:

A B C

-- labels sequence 𝐱 -- observation frames

𝐿CTC = − ln𝑝 𝐳 𝐱)

𝐳



End-to-End Modeling with CTC

• Greedy decoding: 
concatenate the non-
blank tokens 
corresponding to the 
posterior spikes.

• Neither LM nor 
complex decoding is 
involved.

  

 

character sequence



CTC Issues

Issues:
• Assumes conditional independence (CI) between outputs given input. Not true, in general, 

for sequential tasks like ASR, machine translation, language modeling.

• Assumes hard alignment.   Output       dependent on input       . Not true, in general, since 
neighboring inputs                    also have an influence.

Solution:   Attention mechanism  relaxes hard alignment.  
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Note: Fixed context vector ‘c’ at all times.
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CTC Attention



Baseline CTC Network = RNN + CTC Loss

CTC Loss

Wsoft

Softmax

Wsoft

Softmax

Wsoft

Softmax

𝑢 = 𝑡 for CTC modeling
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CTC Annotate

• Key: Compute the context vector cu as time convolved feature.

RNN-ED Annotate CTC Annotate
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Context Vector As Time Convolved Feature

• Time convolved feature is a special case of context vector with uniform attention.

RNN-ED Annotate CTC Annotate

Uniform attention

Non-Uniform attention
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CTC Attend
• Why need this? Ans: To move from uniform to non-uniform attention.

• In non-uniform attention, we weight the input features distinctively.

• How? Introduce an Attend block. No explicit decoder in CTC network. Replace the 
decoder state           in RNN-ED Attend with the logits            in CTC Attend. 

W’0

Attend
Attend

RNN-ED Attend CTC Attend



CTC Attend
• Attend block is simply a single layer neural network.

• Scores        are computed using                 . 

• Softmax over scores computed over a small context window [u –τ,u +τ].

RNN-ED Attend CTC Attend
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Integration with Language Model (LM)
• Instead of using           in Attend(.), use          obtained from another RNN/LSTM           

modeling a pseudo-LM.

•

• The term           captures long-term language information (n-gram like).

• However, because of blanks in CTC, it is only a pseudo-LM.

LM Attend



Component-wise Attention (COMA)

• Instead of a single score per vector    , we obtain a score for every component of     . 

CTC Attend (w/o COMA) CTC Attend (w/ COMA)



Component-wise Attention (COMA)

• Keeping component fixed, take softmax across all time steps to get the COMA 
weights.

CTC Attend (w/o COMA) CTC Attend (w/ COMA)

softmax

softmax



Component-wise Attention (COMA)

• Keeping component fixed, take softmax across all time steps to get the COMA 
weights.

CTC Attend (w/o COMA) CTC Attend (w/ COMA)



Experimental Set-Up
• Training Data: Cortana (Microsoft Voice Assistant)

• 3400 hours  (3.3 million utterances)

• Test Data: Cortana
• 6 hours (5600 utterances)

• Model : 
• Letter CTC (28 or 83 characters)

• 5 layers Uni-LSTM with 1024 memory cells or Bi-LSTM with 512 memory cells in each direction. 
Layer output is linearly projected to 512 dimensions. 

• Greedy decoding
• No lexicon, No LM. (Purest E2E)

• Log Mel Filterbank Energy (LMFE) Features: 
• base frame: 10 ms, Dim = 80

• Input for Uni-LSTM: 8 base frames, shift = 3 base frames, Dim = 640

• Input for Bi-LSTM: 3 base frames, shift = 3 base frames, Dim = 240
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Gain on Larger Units

• More details in “Advancing Acoustic-to-Word CTC Model” at Friday’s 
End-to-End Speech Recognition II session, 13:30-15:30.

CTC Models WER

CD-phone CTC (with LM) 9.28

E2E CTC with 3-letter units 13.28

E2E CTC with 3-letter units + Attention 11.36

E2E CTC with mixed units (word + 3-letter) 9.32

E2E CTC with mixed units + Attention 8.65

https://2018.ieeeicassp.org/Papers/PublicSessionIndex3.asp?Sessionid=1155


Conclusions

• Soft-alignment training in CTC using 
• Time Convolution

• Hybrid Attention

• Implicit LM

• Component Attention

• Reduction in WER: 
• 3400 hrs: ~ 20% relative with single letter unit. Significant gain with larger 

unit.

• Similar improvement no matter whether we used weaker (Uni-LSTM CTC) or 
stronger baseline (Bi-LSTM CTC).
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