ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION

WITH ATTENTION MODELING

Amit Das, Jinyu Li, Rui Zhao, Yifan Gong

Microsoft AI and Research

Outline

- Overview: Connectionist Temporal Classification (CTC)
- Issues with CTC
- Proposed Solution: Blend Attention directly into CTC
- Experiments and Results
- Conclusions

Connectionist Temporal Classification (CTC)

• CTC is a sequence-to-sequence learning method used to map speech waveforms directly to characters, phonemes, or even words

 $L_{\rm CTC} = -\ln p(\mathbf{z} | \mathbf{x})$

Z -- labels sequence

X -- observation **frames**

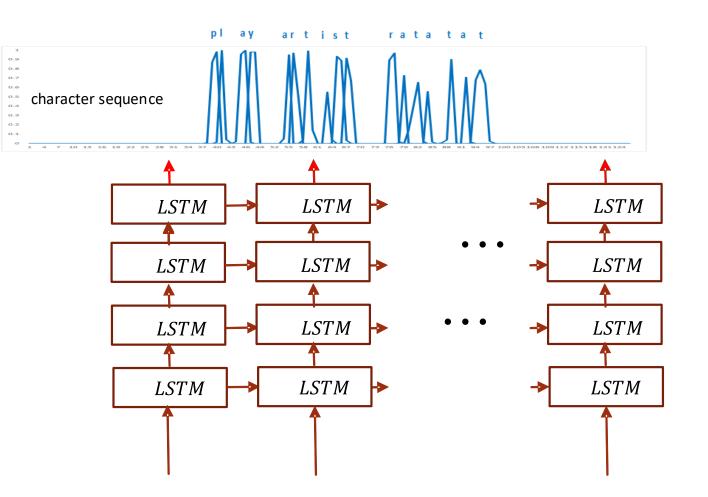
 $p(\mathbf{z}|\mathbf{x}) = \sum p(\boldsymbol{\pi}|\mathbf{x})$

- CTC paths π differ from labels sequences in that:
 - Add the blank as an additional label, meaning no (actual) labels are emitted $^{\pi \in \mathrm{Desired}}$
 - Allow repetitions of non-blank/blank labels

$$\begin{array}{c} A & A & \mathcal{A} & \mathcal{A} & B & C & \mathcal{A} \\ \mathcal{A} & A & B & \mathcal{A} & C & C \\ \mathcal{A} & \mathcal{A} & A & B & C & \mathcal{A} \end{array} \xrightarrow{\mathsf{collapse}} A & B & C \end{array} \xrightarrow{\mathsf{collapse}} A & B & C \end{array} \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{array} \right) \xrightarrow{\mathsf{collapse}} \left(\begin{array}{c} \mathcal{A} & \mathcal{$$

End-to-End Modeling with CTC

- Greedy decoding: concatenate the nonblank tokens corresponding to the posterior spikes.
- Neither LM nor complex decoding is involved.



CTC Issues

Issues:

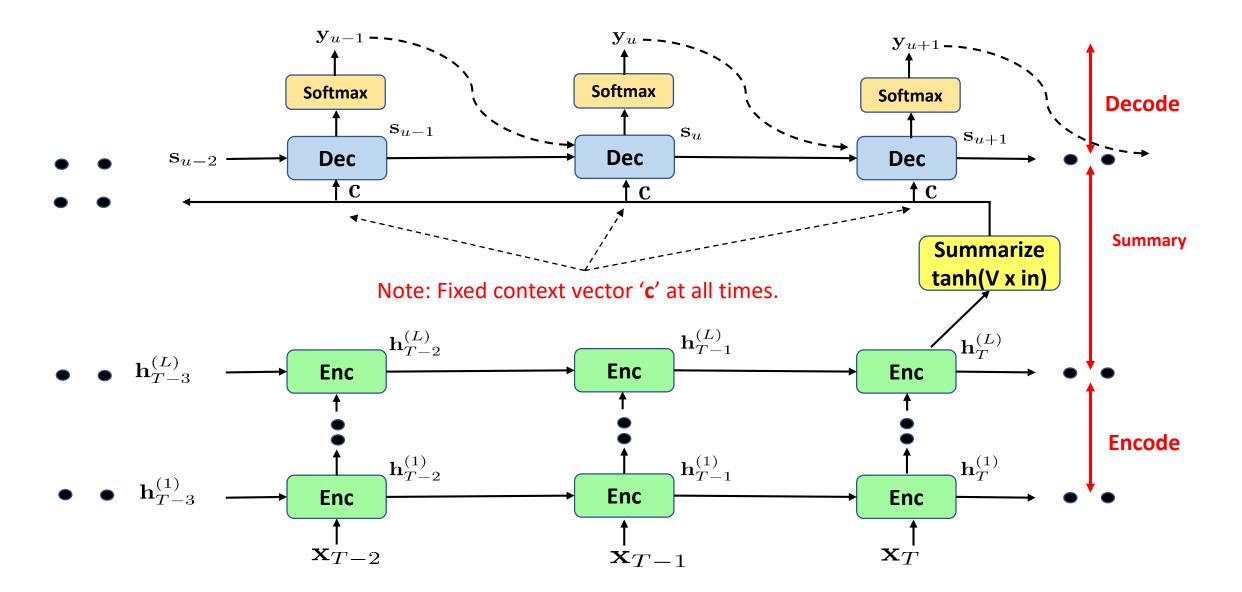
• Assumes conditional independence (CI) between outputs given input. Not true, in general, for sequential tasks like ASR, machine translation, language modeling.

$$p(\boldsymbol{\pi}|\mathbf{x}) \stackrel{\text{CI}}{=} \prod_{t=1}^{T} p(\pi_t|\mathbf{x}) \stackrel{\Delta}{=} \prod_{t=1}^{T} y_t(\pi_t) \qquad \qquad \text{CI:} (\pi_t \perp \pi_{\neq t}) |\mathbf{x}|$$

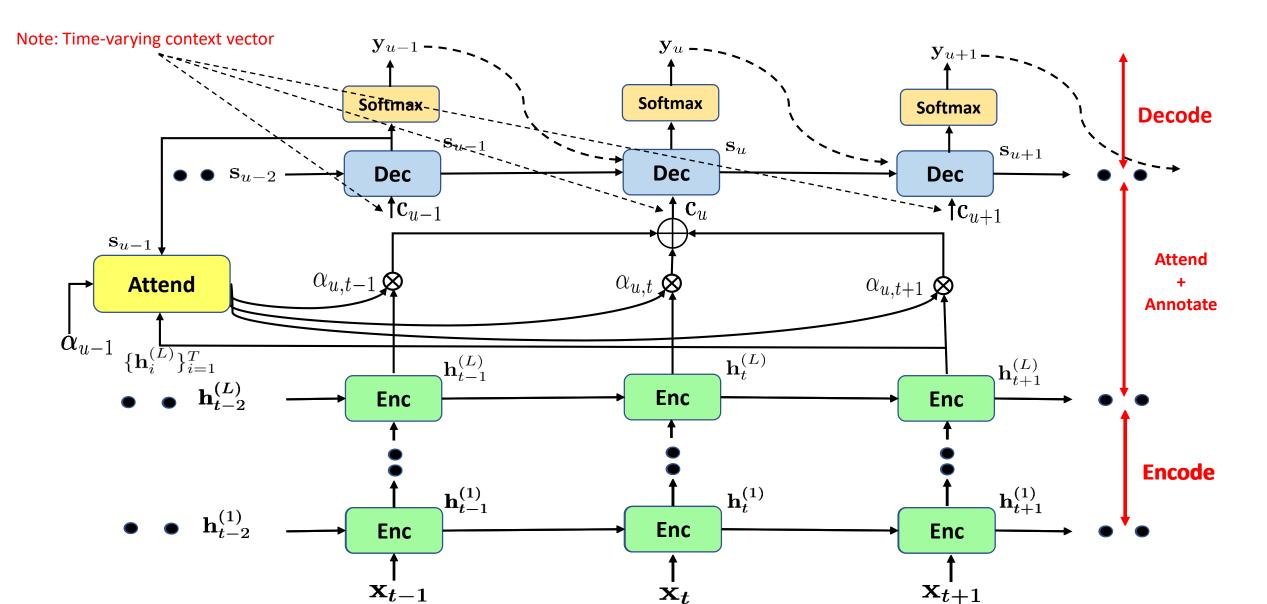
• Assumes hard alignment. Output y_t dependent on input x_t . Not true, in general, since neighboring inputs $x_{< t}, x_{> t}$ also have an influence.

Solution: Attention mechanism relaxes hard alignment.

RNN-Encoder Decoder (No Attention)

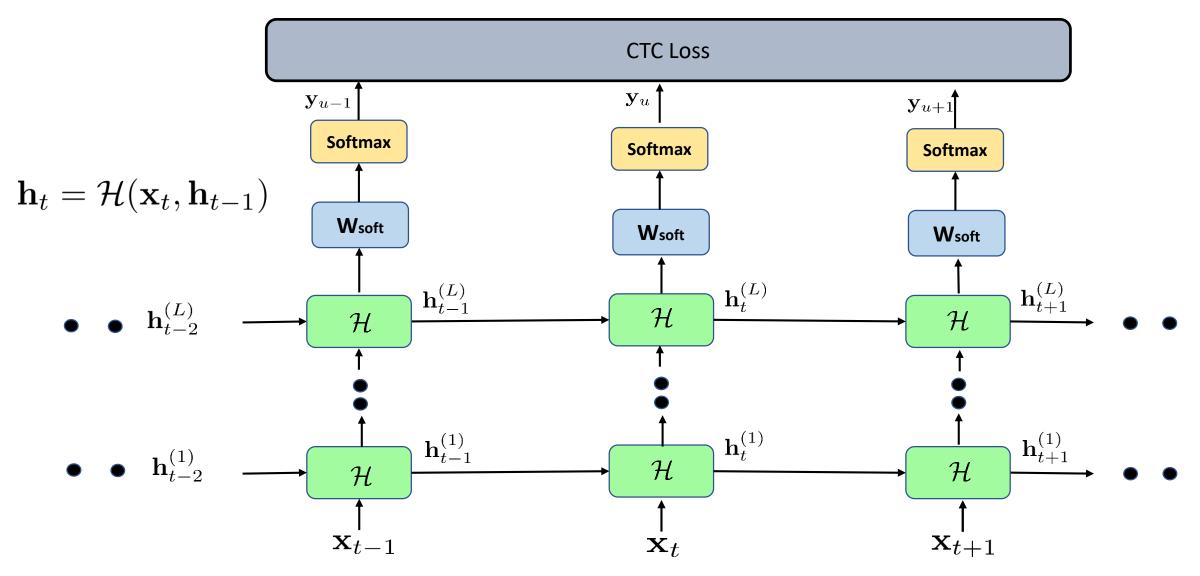


RNN-Encoder Decoder (Attention)

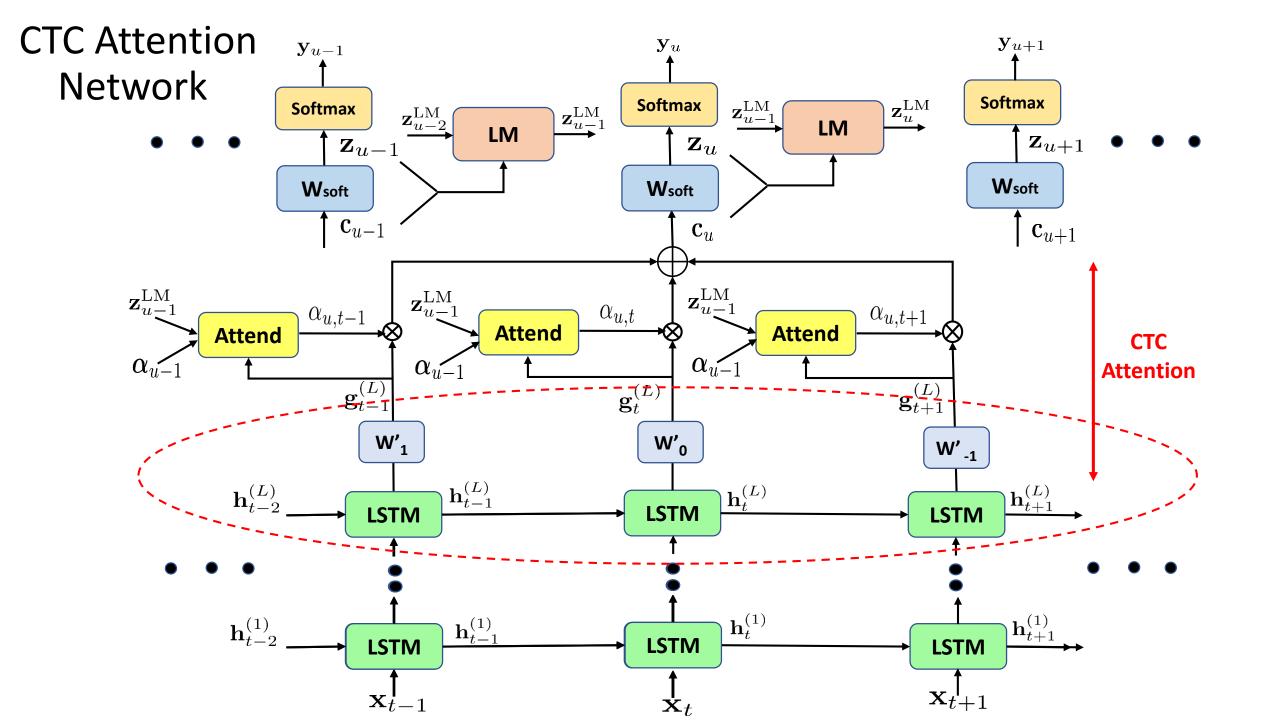


CTC Attention

Baseline CTC Network = RNN + CTC Loss

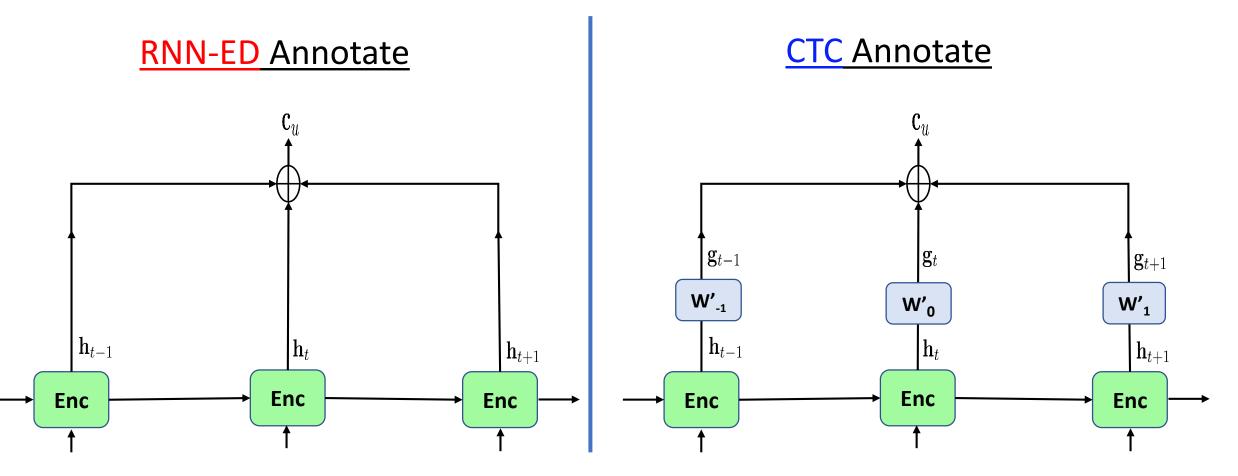


u = t for CTC modeling



CTC Annotate

• Key: Compute the context vector **c**_u as **time convolved feature**.



Context Vector As Time Convolved Feature

• Time convolved feature is a special case of context vector with uniform attention.

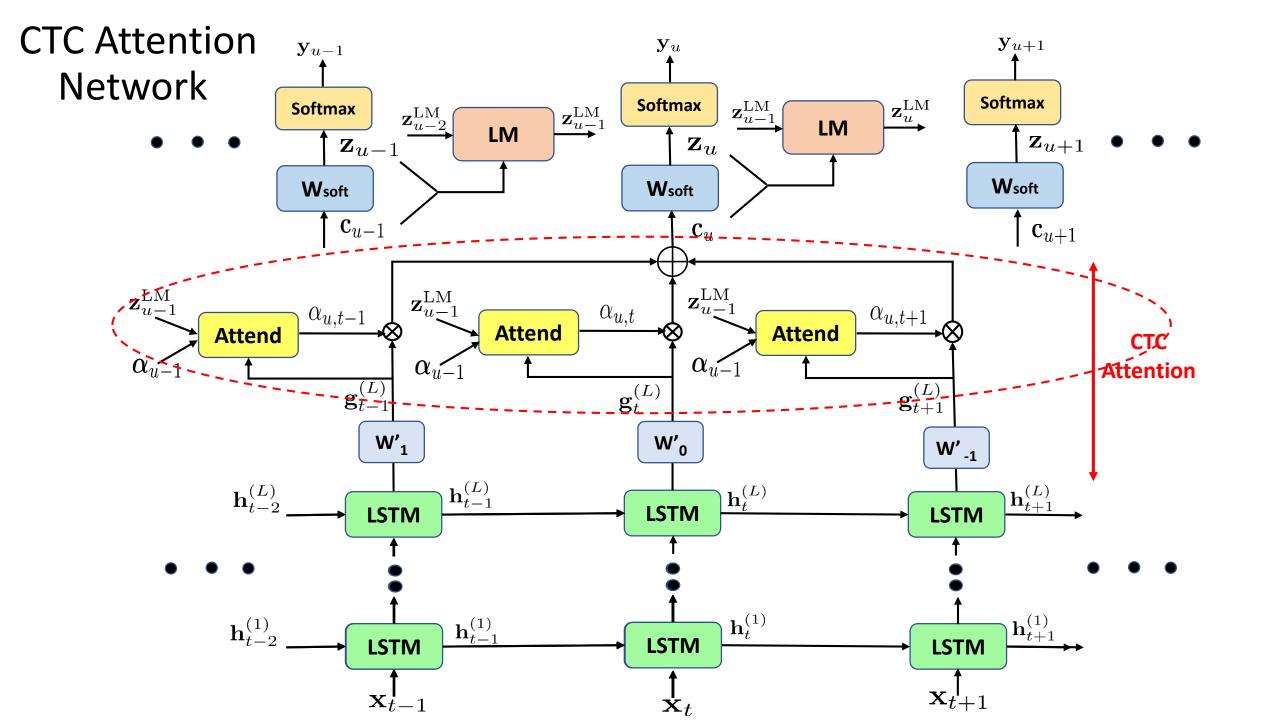
RNN-ED Annotate

$$\mathbf{c}_u = \text{Annotate}(\boldsymbol{\alpha}_u, \mathbf{h})$$

 $= \sum_{t=1}^T \alpha_{u,t} \mathbf{h}_t$

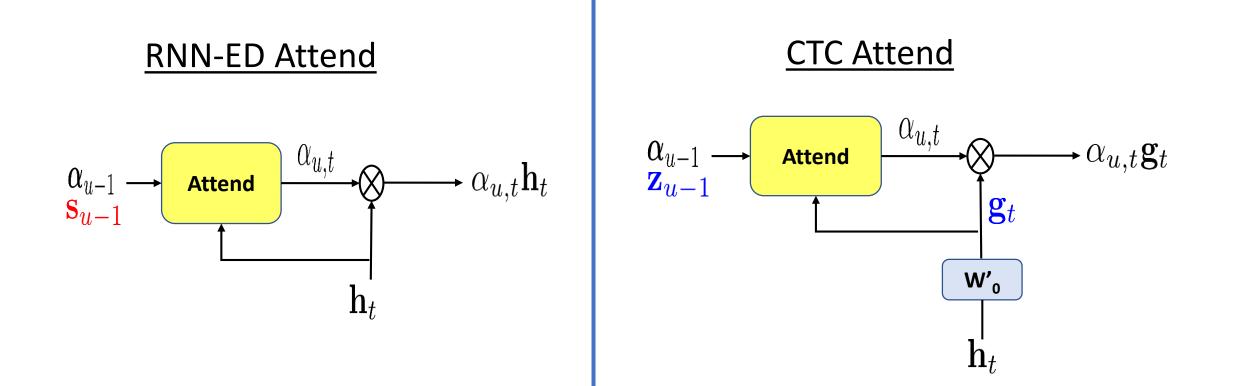
Non-Uniform attention

CTC Annotate $\mathbf{c}_u = \mathbf{W}' * \mathbf{h}$ $=\sum^{u+ au} \mathbf{W}_{u-t}' \mathbf{h}_t$ $t = u - \tau$ $\stackrel{\Delta}{=} \sum^{u+ au} \mathbf{g}_t$ $t = u - \tau$ $u + \tau$ $=\gamma \sum \alpha_{u,t} \mathbf{g}_t.$ $t = u - \tau$ $t = u - \tau$ $\alpha_{u,t} = \frac{1}{C} \longrightarrow \text{Uniform attention}$ $\gamma = C$



CTC Attend

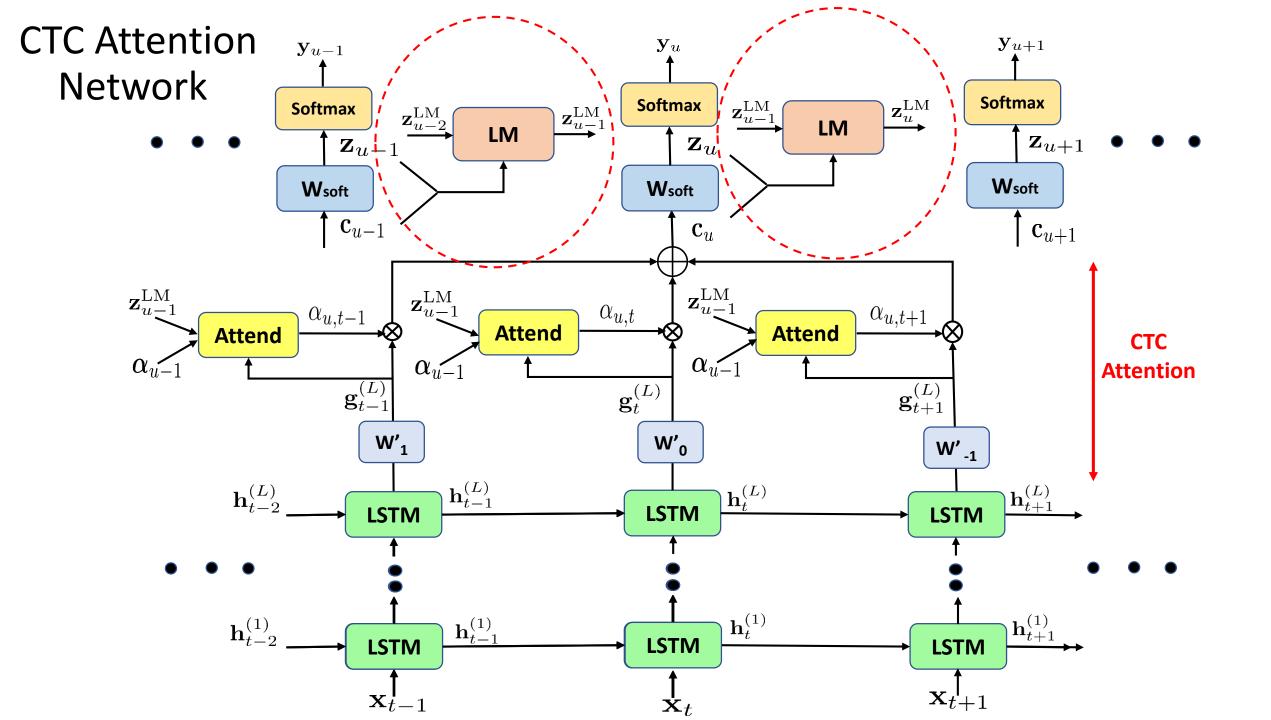
- Why need this? Ans: To move from uniform to non-uniform attention.
- In non-uniform attention, we weight the input features distinctively.
- How? Introduce an Attend block. No explicit decoder in CTC network. Replace the decoder state s_{u-1} in RNN-ED Attend with the logits z_{u-1} in CTC Attend.



CTC Attend

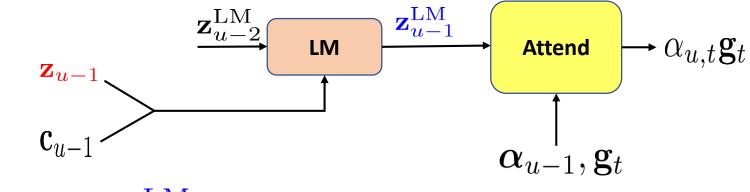
- Attend block is simply a single layer neural network.
- Scores $e_{u,t}$ are computed using $\mathbf{z}_{u-1}, \mathbf{g}_t$.
- Softmax over scores computed over a small context window [u τ , u + τ].

$$\frac{\text{RNN-ED Attend}}{\sum_{u,t}^{T} \tanh(\mathbf{U}_{u-1}^{T} + \mathbf{W}_{t}^{T} + \mathbf{b}), \text{ (content)}}{\mathbf{v}^{T} \tanh(\mathbf{U}_{u-1}^{T} + \mathbf{W}_{t}^{T} + \mathbf{V}_{u,t}^{T} + \mathbf{b}), \text{ (hybrid)}} = \begin{cases} \mathbf{v}^{T} \tanh(\mathbf{U}_{u-1}^{T} + \mathbf{W}_{t}^{T} + \mathbf{b}), \text{ (content)} \\ \mathbf{v}^{T} \tanh(\mathbf{U}_{u-1}^{T} + \mathbf{W}_{t}^{T} + \mathbf{V}_{u,t}^{T} + \mathbf{b}), \text{ (hybrid)} \end{cases} = \begin{cases} \mathbf{v}^{T} \tanh(\mathbf{U}_{u-1}^{T} + \mathbf{W}_{t}^{T} + \mathbf{b}), \text{ (content)} \\ \mathbf{v}^{T} \tanh(\mathbf{U}_{u-1}^{T} + \mathbf{W}_{t}^{T} + \mathbf{V}_{u,t}^{T} + \mathbf{b}), \text{ (hybrid)} \end{cases}$$
$$\alpha_{u,t} = \frac{\exp(e_{u,t})}{\sum_{t'=1}^{T} \exp(e_{u,t'})}, \quad t = [1,T]$$
$$\alpha_{u,t} = \frac{\exp(e_{u,t})}{\sum_{t'=u-\tau}^{u+\tau} \exp(e_{u,t'})}, \quad t = [u-\tau, u+\tau]$$



Integration with Language Model (LM)

• Instead of using \mathbf{Z}_{u-1} in Attend(.), use $\mathbf{Z}_{u-1}^{\text{LM}}$ obtained from another RNN/LSTM $\mathcal{H}(.)$ modeling a pseudo-LM.



$$\boldsymbol{\alpha}_{u} = \operatorname{Attend}(\mathbf{z}_{u-1}^{\operatorname{LM}}, \boldsymbol{\alpha}_{u-1}, \mathbf{g})$$
$$\mathbf{z}_{1}^{\operatorname{LM}} = \mathcal{H}(\mathbf{x}_{1}^{\operatorname{LM}}, \mathbf{z}_{1}^{\operatorname{LM}}), \quad \mathbf{x}_{1}^{\operatorname{LM}} = \begin{bmatrix} \mathbf{z}_{u} \\ \mathbf{z}_{u}^{\operatorname{LM}} \end{bmatrix}$$

$$\mathbf{z}_{u-1}^{\text{LM}} = \mathcal{H}(\mathbf{x}_{u-1}^{\text{LM}}, \mathbf{z}_{u-2}^{\text{LM}}), \quad \mathbf{x}_{u-1}^{\text{LM}} = \begin{bmatrix} \mathbf{z}_{u-1} \\ \mathbf{c}_{u-1} \end{bmatrix}$$

- The term $\mathbf{Z}_{u-1}^{\text{LM}}$ captures long-term language information (n-gram like).
- However, because of blanks in CTC, it is only a pseudo-LM.

Component-wise Attention (COMA)

• Instead of a single score per vector g_t , we obtain a score for every component of g_t .

CTC Attend (w/o COMA)

 $e_{u,t} = \begin{cases} \mathbf{v}^T \tanh(\mathbf{U}\mathbf{z}_{u-1} + \mathbf{W}\mathbf{g}_t + \mathbf{b}), \text{ (content)} \\ \mathbf{v}^T \tanh(\mathbf{U}\mathbf{z}_{u-1} + \mathbf{W}\mathbf{g}_t + \mathbf{V}\mathbf{f}_{u,t} + \mathbf{b}), \text{ (hybrid)} \end{cases}$

$$e_{u,t} \in \mathbb{R}$$
$$t = [u - \tau, u + \tau]$$

CTC Attend (w/ COMA)

$$\mathbf{e}_{u,t} = \begin{cases} \tanh(\mathbf{U}\mathbf{z}_{u-1} + \mathbf{W}\mathbf{g}_t + \mathbf{b}), \text{ (content)} \\ \tanh(\mathbf{U}\mathbf{z}_{u-1} + \mathbf{W}\mathbf{g}_t + \mathbf{V}\mathbf{f}_{u,t} + \mathbf{b}), \text{ (hybrid)} \end{cases}$$

$$\mathbf{e}_{u,t} \in \mathbb{R}^n$$
$$t = [u - \tau, u + \tau]$$

Component-wise Attention (COMA)

• Keeping component fixed, take softmax across all time steps to get the COMA weights.

 \mathcal{N}

 $\underbrace{\text{STC Attend } (w_{t} \in \mathbb{R})}_{e_{u,t} \leftarrow e_{u,t} \leftarrow e_{u,t+\tau}}$ $\begin{bmatrix} e_{u,t-\tau} & e_{u,t-\tau+1} & \cdots & e_{u,t} & \cdots & e_{u,t+\tau} \end{bmatrix}$ $\underbrace{\text{Softmax}}$

$$\begin{array}{c} \underbrace{\text{CTC Attend } (\textbf{w} / \text{COMA})}_{\textbf{e}_{u,t} \in \mathbb{R}^{n}} \\ t - \tau & t - \tau + 1 & \dots & t & \dots & t + \tau \end{array} \\ \begin{pmatrix} e_{u,t-\tau}(1) & e_{u,t-\tau+1}(1) & \dots & e_{u,t}(1) & \dots & e_{u,t+\tau}(1) \\ e_{u,t-\tau}(2) & e_{u,t-\tau+1}(2) & \dots & e_{u,t}(2) & \dots & e_{u,t+\tau}(2) \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ e_{u,t-\tau}(n) & e_{u,t-\tau+1}(n) & \dots & e_{u,t}(n) & \dots & e_{u,t+\tau}(n) \end{pmatrix} \end{array}$$

Component-wise Attention (COMA)

• Keeping component fixed, take softmax across all time steps to get the COMA weights.

CTC Attend (w/o COMA)

$$\alpha_{u,t} = \frac{\exp(e_{u,t})}{\sum_{t'=u-\tau}^{u+\tau} \exp(e_{u,t'})}$$

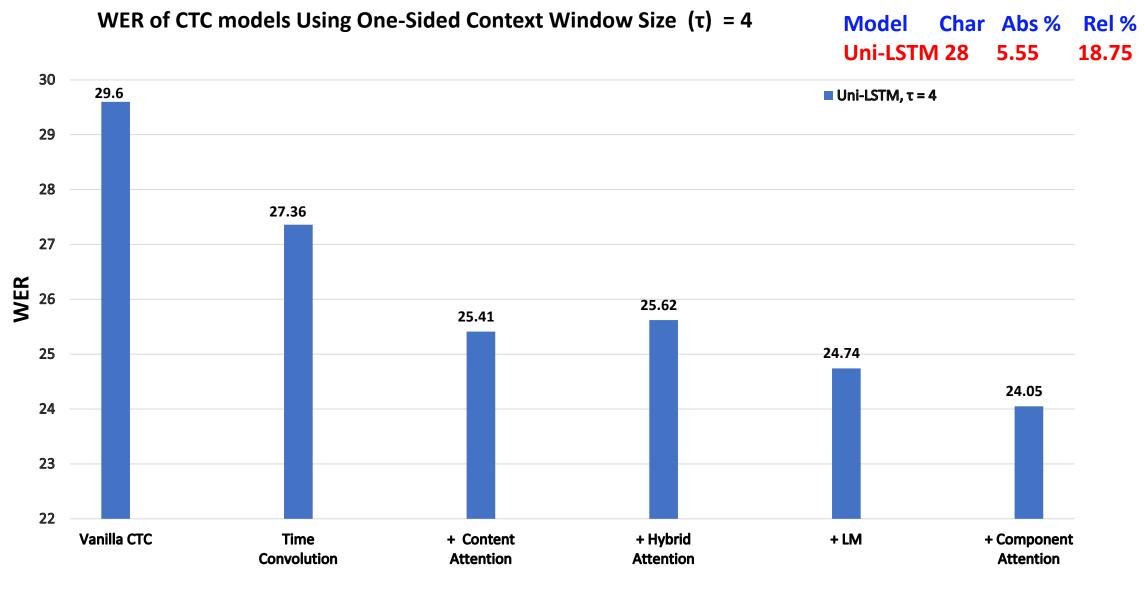
$$\mathbf{c}_u = \gamma \sum_{t=u-\tau}^{u+\tau} \alpha_{u,t} \mathbf{g}_t$$

CTC Attend (w/ COMA)

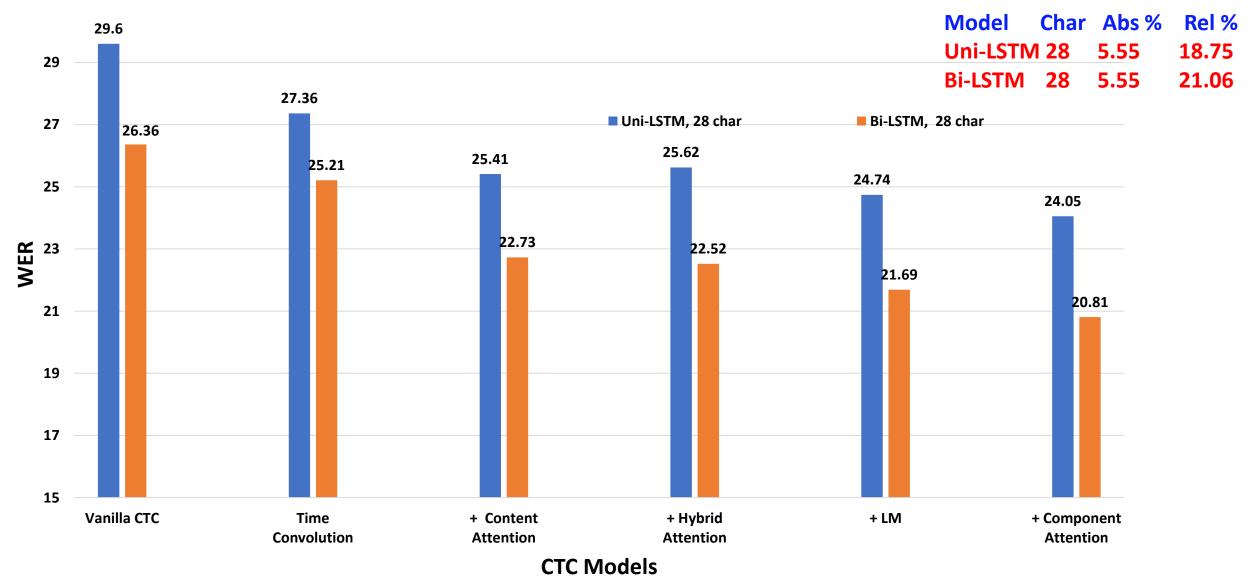
$$\alpha_{u,t,j} = \frac{\exp(e_{u,t,j})}{\sum_{t'=u-\tau}^{u+\tau} \exp(e_{u,t',j})}, \quad j = 1, \cdots, n$$
$$\mathbf{c}_u = \gamma \sum_{t=u-\tau}^{u+\tau} \boldsymbol{\alpha}_{u,t} \odot \mathbf{g}_t$$

Experimental Set-Up

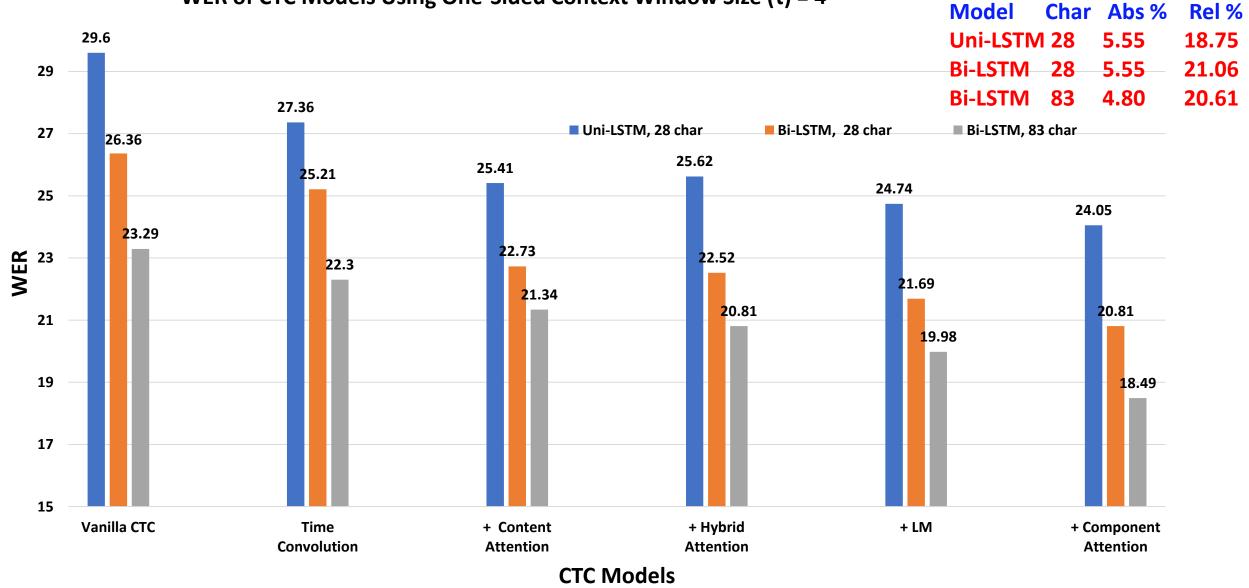
- Training Data: Cortana (Microsoft Voice Assistant)
 - 3400 hours (3.3 million utterances)
- Test Data: Cortana
 - 6 hours (5600 utterances)
- Model :
 - Letter CTC (28 or 83 characters)
 - 5 layers Uni-LSTM with 1024 memory cells or Bi-LSTM with 512 memory cells in each direction. Layer output is linearly projected to 512 dimensions.
- Greedy decoding
 - No lexicon, No LM. (Purest E2E)
- Log Mel Filterbank Energy (LMFE) Features:
 - base frame: 10 ms, Dim = 80
 - Input for Uni-LSTM: 8 base frames, shift = 3 base frames, Dim = 640
 - Input for Bi-LSTM: 3 base frames, shift = 3 base frames, Dim = 240



CTC Models



WER of CTC Models Using One-Sided Context Window Size $(\tau) = 4$



WER of CTC Models Using One-Sided Context Window Size (τ) = 4

Gain on Larger Units

CTC Models	WER
CD-phone CTC (with LM)	9.28
E2E CTC with 3-letter units	13.28
E2E CTC with 3-letter units + Attention	11.36
E2E CTC with mixed units (word + 3-letter)	9.32
E2E CTC with mixed units + Attention	8.65

• More details in "Advancing Acoustic-to-Word CTC Model" at Friday's End-to-End Speech Recognition II session, 13:30-15:30.

Conclusions

- Soft-alignment training in CTC using
 - Time Convolution
 - Hybrid Attention
 - Implicit LM
 - Component Attention
- Reduction in WER:
 - 3400 hrs: \sim 20% relative with single letter unit. Significant gain with larger unit.
 - Similar improvement no matter whether we used weaker (Uni-LSTM CTC) or stronger baseline (Bi-LSTM CTC).

Thank You