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Introduction

• Problem statement and objectives
• Faster and more stable training for deep neural networks (DNNs)
• Investigating 2nd order optimization techniques
• Applied to recurrent neural network language model (RNNLM)

• Existing RNNLM training algorithms
• Minimize the cross entropy (CE) using stochastic gradient descent (SGD)
• SGD uses no higher order gradient information, models no correlation 

between parameters, poorly captures error cost function curvature
• Quadratic approximation to error cost function using Newton methods
• Storing and computing Hessian matrix and its inverse are problematic
• Quasi-Newton methods, e.g. Hessian-free optimization applied to DNN 

acoustic modeling; iterative conjugate gradient (CG) method
• CG search very expensive for large datasets in Hessian-free optimization

• Our approach
• Limited-memory Broyden Fletcher Goldfarb Shannon (L-BFGS) based 

2nd order optimization for RNNLM training
• Efficiently approximates the product between inverse Hessian and 

gradient vector via a recursion over past gradients
• Only require a few vectors representing finite number of past updates of 

the matrix-vector product, so it’s memory efficient

Recurrent Neural Network LMs

• RNNLM description
• Vector representation of complete word history ℎ"#$" = &#$",⋯ ,&"
• Sigmoid hidden layer activation
• Shortlist output vocabulary plus out-of-shortlist (OOS) output node
• Output probability linearly interpolated with n-gram LMs 

) &# ℎ"#$" = *)+, &# ℎ"#$" + 1 − * )0++ &# ℎ"#$"

RNNLM Training Using SGD

RNNLM Training Using L-BFGS

• Cross entropy training criterion
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• where 56 is the total words of a given sequence
• )0++ &# ℎ# = <=>?@ABC D#$"; 4

• Gradient stats for 
output layer weights: 
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H# is the error cost vector
H#,J = K &J ℎ# − )0++ &J ℎ#
K &J ℎ# = 0 MN 1 (target prob.)

• Back propagate, e.g. to recurrent layer:
F123 O
FO = −
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O is the recurrent layer weight matrix
Q#,J = D#,J 1 − D#,J
⊙ denotes elementwise multiplication

• Back propagation through time (BPTT):
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• SGD training procedure for RNNLM
• Parameter update: 4 T + 1 = 4 T − U

F123 4
F4 4 = 4 T

4 is the layer wise 
weight matrix, this is 
applied to all layers

• Newton methods
• Can model the correlation between model parameters using a quadratic

approximation to the error cost function
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• Newton direction
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where the Hessian matrix is computed as
]@,#,J =

X^YZ[ 4
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• L-BFGS method for RNNLM training

Experiments and Results

Conclusion

• L-BFGS optimization for RNNLM training & Future work
• Successfully applied to RNNLM training
• Consistent improvements over SGD on multiple speech recognition tasks
• Future research on L-BFGS training of advanced forms of NNs

• Experiment setup
• Datasets: the Switchboard English system (SWBD), 300 hours, 3.6M words of 

acoustic transcripts and a 30k words lexicon; Babel Cantonese system, 175 
hours, 1.1M words of transcripts and a 25k vocabulary

• Acoustic model: MPE trained stacked hybrid DNN-HMM by HTK toolkit
• Target of acoustic DNN: SWBD, 12k tied states; Babel Cantonese, 6k tied states
• RNNLM model structure and training: 512 hidden nodes and Sigmoid activation; 

SGD training with newbob scheduling plus momentum or L-BFGS method
• Evaluation method: perplexity (PPL) and word error rate (WER)
• GPU card: NVidia K40 GPUs; used to measure speed

• Convergence: 19 epochs using 5604s for SGD; 9 epochs using 4709s for L-BFGS
• 0.7% abs. WER reductions obtained by L-BFGS before interpolation with 4-gram

• Results on Babel Cantonese

• Convergence: 16 epochs using 1453s for SGD; 6 epochs using 767s for L-BFGS
• 0.8% abs. WER reductions obtained by L-BFGS before interpolation with 4-gram 
• Observed on both tasks, the combination between SGD and L-BFGS is 

complementary since consistent improvements are obtained

• Efficient GPU based training parallelization
• L-BFGS for RNNLM is implemented as an extension to CUED-RNNLM
• Integrated into an efficient bunch mode GPU parallelization algorithm
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• Results on Switchboard


