

LIMITED-MEMORY BFGS OPTIMIZATION OF RECURRENT NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION Xunying Liu¹, Shansong Liu¹, Jinze Sha², Jianwei Yu¹, Zhiyuan Xu², Xie Chen² & Helen Meng¹

Introduction

• **Problem statement and objectives**

- Faster and more stable training for deep neural networks (DI •
- Investigating 2nd order optimization techniques
- Applied to recurrent neural network language model (RNNL

• Existing RNNLM training algorithms

- Minimize the cross entropy (CE) using stochastic gradient de \bullet
- SGD uses no higher order gradient information, models no c between parameters, poorly captures error cost function curv
- Quadratic approximation to error cost function using Newton
- Storing and computing Hessian matrix and its inverse are pr
- Quasi-Newton methods, e.g. Hessian-free optimization appli acoustic modeling; iterative conjugate gradient (CG) method
- CG search very expensive for large datasets in Hessian-free

• Our approach

- Limited-memory Broyden Fletcher Goldfarb Shannon (L-BF 2nd order optimization for RNNLM training
- Efficiently approximates the product between inverse Hessia gradient vector via a recursion over past gradients
- Only require a few vectors representing finite number of past the matrix-vector product, so it's memory efficient

Recurrent Neural Network LMs

Input layer Hidden layer Output layer

• **RNNLM description**

- Vector representation of complete word history $h_1^{i-1} = \langle w_{i-1} \rangle$
- Sigmoid hidden layer activation
- Shortlist output vocabulary plus out-of-shortlist (OOS) output node
- Output probability linearly interpolated with n-gram LMs

$$P(w_i | h_1^{i-1}) = \lambda P_{NG}(w_i | h_1^{i-1}) + (1 - \lambda) P_{RNN}(w_i | h_1^{i-1})$$

{xyliu, ssliu, jwyu, hmmeng}@se.cuhk.edu.hk, {js2294, zyx22, xc257}@cam.ac.uk ¹The Chinese University of Hong Kong, ²Cambridge University Engineering Department

	RNNLM Training Using				
NNs) LM) escent (SGD) correlation vature n methods oblematic ied to DNN d optimization FGS) based	• Cross entropy training criterion $J^{CE}(\theta) = -\frac{1}{N_w} \sum_{i=1}^{N_w} \ln P_{RNN}(w_i)$ • where N_w is the total words of a given sequence • $P_{RNN}(w_i h_i) = f_{softmax}(v_{i-1}; \theta)$ • SGD training procedure for RNNLM • Parameter update: $\theta[t+1] = \theta[t] - \eta \frac{\partial J^{CE}(\theta)}{\partial \theta}$ • Gradient stats for $0 = -\frac{1}{N_w} \sum_{i=1}^{N_w} v_i \xi_i^T$ • Back propagate, e.g. to recurrent layer: $\frac{\partial J^{CE}(\zeta)}{\partial \zeta} = -\frac{1}{N_w} \sum_{i=1}^{N_w} v_{i-1} (\xi_i \odot u_i)^T$ • Back propagation through time (BPTT): $\frac{\partial J^{CE}(\zeta)}{\partial \zeta} = -\frac{1}{N_w} \sum_{i=1,\tau=1}^{N_w,N_\tau} v_{i-\tau-1}(\xi_{i-\tau})$				
st updates of	RNNLM Training Using L-				
-2)	• Can model the correlation between model para approximation to the error cost function $J^{CE}(\boldsymbol{\theta}[t] + \Delta \boldsymbol{\theta}) \approx J^{CE}(\boldsymbol{\theta}[t]) + \Delta \boldsymbol{\theta}^T \frac{\partial J^{CE}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big _{\boldsymbol{\theta} = \boldsymbol{\theta}[t]}$ • Newton direction $\Delta \boldsymbol{\theta} = \boldsymbol{H}_t^{-1} \frac{\partial J^{CE}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big _{\boldsymbol{\theta} = \boldsymbol{\theta}[t]} \qquad \text{where} \\ \boldsymbol{H}_{t,i,j} = \boldsymbol{\theta}[t] \qquad \text{where} \\ \boldsymbol{H}_{t,i,j} = \boldsymbol{\theta}[t] \qquad \boldsymbol{H}_{t,i,j} = \boldsymbol{\theta}[t] \qquad \boldsymbol{H}_{t,i,j} = \boldsymbol{\theta}[t] \qquad \boldsymbol{\theta} = \theta$				
$1, \cdots, W_1$	$\begin{aligned} \mathbf{h} \mathbf{q}_{t} \leftarrow \partial \boldsymbol{\theta} & \boldsymbol{\theta} = \boldsymbol{\theta}_{[t]} \\ 2: \text{ for } \mathbf{i} = \mathbf{t} - 1, \mathbf{t} - 2, \dots, \mathbf{t} - \mathbf{m} \text{ do} \\ 3: \mathbf{s}_{i} \leftarrow \boldsymbol{\theta}[i+1] - \boldsymbol{\theta}[i], \mathbf{y}_{i} \leftarrow \mathbf{q}_{i+1} - \mathbf{q} \\ 4: \rho_{i} \leftarrow \frac{1}{\mathbf{y}_{i}^{\top} \mathbf{s}_{i}}, \alpha_{i} \leftarrow \rho_{i} \mathbf{s}_{i}^{\top} \mathbf{q}_{t} \\ 5: \text{ end for} \\ 6: \mathbf{B}_{t}^{0} \leftarrow \frac{\mathbf{y}_{t-m} \mathbf{s}_{t-m}^{\top}}{\mathbf{y}_{t-m}^{\top} \mathbf{y}_{t-m}}, \mathbf{z} \leftarrow \mathbf{B}_{t}^{0} \mathbf{q}_{t} \\ 7: \text{ for } \mathbf{i} = \mathbf{t} - \mathbf{m}, \mathbf{t} - \mathbf{m} + 1, \dots, \mathbf{t} - 1 \text{ do} \\ 8: \beta_{i} \leftarrow \rho_{i} \mathbf{y}_{i}^{\top} \mathbf{z}, \mathbf{z} \leftarrow \mathbf{z} + (\alpha_{i} - \beta_{i}) \mathbf{s}_{i} \\ 9: \mathbf{end for} \\ 10: \mathbf{H}_{t}^{-1} \frac{\partial J^{CE}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big _{\boldsymbol{\theta} = \boldsymbol{\theta}[t]} \leftarrow \mathbf{z} \text{ (parameter upd)} \end{aligned}$				

Efficient GPU based training parallelizati ullet• L-BFGS for RNNLM is implemented as an ex-

• Integrated into an efficient bunch mode GPU p

SGD	Experiments and Results					
h_{i}) ce $\theta \text{ is the layer wise weight matrix, this is applied to all layers}$ $\xi_{i} \text{ is the error cost vector}$ $\xi_{i,j} = \delta(w_{j} h_{i}) - P_{RNN}(w_{j} h_{i})$ $\delta(w_{j} h_{i}) = 0 \text{ or } 1 \text{ (target prob.)}$	 Experiment setup Datasets: the Switchboar acoustic transcripts and a hours, 1.1M words of transcripts and a hours, 1.1M words of transcripts and a hours, 1.1M words of transcripts and a hours, 1.1M model: MPE transcripts of acoustic DNN: Acoustic model: MPE transcripts and a hours, 1.1M words of transcripts and a hours, 1.1M wor	d English system (SWBD), 3 a 30k words lexicon; Babel C inscripts and a 25k vocabular ained stacked hybrid DNN-F SWBD, 12k tied states; Bab e and training: 512 hidden no ob scheduling plus momentu lexity (PPL) and word error GPUs; used to measure speed	300 hour Cantones Ty IMM by oel Canto odes and im or L-T rate (WI d	rs, 3.6M w se system, HTK tool onese, 6k t Sigmoid a BFGS met ER)	ords of 175 kit ied states activation; hod	
$= \boldsymbol{v}_{i,j} (1 - \boldsymbol{v}_{i,j})$ enotes elementwise multiplication	8 0 7.8		P	PI swb	ER%	
$\odot \boldsymbol{u}_{i-\tau})^T$	on Data Entropy	rnn.SGD rnn.LBFGS rnn.SGD+rnn.LBFGS	10 10 9!	FL SWD 04.3 13.9 00.8 13.2 5.8 13.2	a chin 2 26.1 2 25.9 2 25.4	
BFGS ameters using a quadratic	$\begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6.6 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ Training Epoch \end{array}$	4-gram 4-gram+rnn.SGD 4-gram+rnn.LBFGS 4-gram+rnn.SGD+rnn.LBF	97 87 87 GS 85	7.2 12.9 7.0 12.6 7.7 12.4 5.9 12.4	25.4 24.8 24.7 24.6	
$_{t]} + \frac{1}{2} \Delta \boldsymbol{\theta}^T \boldsymbol{H}_t \Delta \boldsymbol{\theta}$	 Convergence: 19 epochs 0.7% abs. WER reduction Results on Rabel Canto 	using 5604s for SGD; 9 epo ns obtained by L-BFGS befo	chs usin ore interp	g 4709s fo polation w	r L-BFGS ith 4-gram	
the Hessian matrix is computed as				CF	R%	
$= \frac{\partial^2 J^{\partial 2}(\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} \bigg _{\boldsymbol{\theta} = \boldsymbol{\theta}[t]}$	8 RNN SGD	LM	PPL	devsub1	devsub2	
ts A L_BEGS algo		rnn.SGD rnn.LBFGS rnn.SGD+rnn.LBFGS	136.5 127.9 119.7	43.5 42.7 42.6	44.1 43.3 4 3 .2	
atrix-vector product	7.2 - 767s	4-gram 4-gram+rnn.SGD 4-gram+rnn.LBFGS 4-gram+rnn.SGD+rnn.LBFGS	113.7 106.8 106.2 104.8	42.1 42.0 41.8 41.8	42.7 42.6 42.4 42.3	
(past gradient)	 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Training Epoch Convergence: 16 epochs 0.8% abs. WER reduction Observed on both tasks, 1 complementary since cor 	onvergence: 16 epochs using 1453s for SGD; 6 epochs using 767s for L-BFGS 3% abs. WER reductions obtained by L-BFGS before interpolation with 4-gram oserved on both tasks, the combination between SGD and L-BFGS is mplementary since consistent improvements are obtained				
		Conclusion				
ate direction)						
tion	• L-BFGS optimization f	or RNNLM training & I	Future	work		
tension to CUED-RNNLM parallelization algorithm	 L-BFGS optimization for Successfully applied to R Consistent improvements Future research on L-BFG 	or RNNLM training & I NNLM training s over SGD on multiple speed GS training of advanced form	Future ch recog ns of NN	work gnition task Ns	5S	

This research was supported by MSRA grant no. 6904412 and Chinese University of Hong Kong (CUHK) grant no. 4055065

